메뉴 건너뛰기




Volumn 55, Issue 3, 2011, Pages 1498-1508

Bayesian analysis of the patterns of biological susceptibility via reversible jump MCMC sampling

Author keywords

Classification; Markov chain Monte Carlo method; Mixture normal models; Model selection; Reversible jump algorithms

Indexed keywords

BAYESIAN ANALYSIS; BIOLOGICAL EXPERIMENTS; CLASSIFICATION; COMPONENT PARAMETERS; DATA SETS; DOSE RESPONSE; FINITE MIXTURE MODELS; MARKOV CHAIN MONTE CARLO METHOD; MODEL SELECTION; MULTI-DIMENSIONAL PARAMETERS; NORMAL MIXTURES; NUMBER OF COMPONENTS; POSTERIOR PROBABILITY; REVERSIBLE JUMP; REVERSIBLE JUMP MARKOV CHAIN MONTE CARLO; REVERSIBLE JUMP MCMC; UNIVARIATE;

EID: 78649320476     PISSN: 01679473     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.csda.2010.10.016     Document Type: Article
Times cited : (7)

References (25)
  • 1
    • 0141477361 scopus 로고
    • Bayesian computation and stochastic systems (with discussion)
    • J. Besag, P.J. Green, D. Higdon, and K. Mengersen Bayesian computation and stochastic systems (with discussion) Statist. Sci. 10 1995 3 66
    • (1995) Statist. Sci. , vol.10 , pp. 3-66
    • Besag, J.1    Green, P.J.2    Higdon, D.3    Mengersen, K.4
  • 2
    • 0042379699 scopus 로고    scopus 로고
    • On Bayesian analyses and finite mixtures for proportions
    • S.P. Brooks On Bayesian analyses and finite mixtures for proportions Stat. Comput. 11 2 2001 179 190
    • (2001) Stat. Comput. , vol.11 , Issue.2 , pp. 179-190
    • Brooks, S.P.1
  • 4
    • 0028898956 scopus 로고
    • Calculation of benchmark doses from continuous data
    • K.S. Crump Calculation of benchmark doses from continuous data Risk Anal. 15 1995 79 89
    • (1995) Risk Anal. , vol.15 , pp. 79-89
    • Crump, K.S.1
  • 5
    • 0001244941 scopus 로고
    • Estimation of finite mixture distributions through Bayesian sampling
    • J. Diebolt, and C.P. Robert Estimation of finite mixture distributions through Bayesian sampling J. R. Stat. Soc. Ser. B 56 1994 363 375
    • (1994) J. R. Stat. Soc. Ser. B , vol.56 , pp. 363-375
    • Diebolt, J.1    Robert, C.P.2
  • 6
    • 84950937290 scopus 로고
    • Bayesian density estimation and inference using mixtures
    • M.D. Escobar, and M. West Bayesian density estimation and inference using mixtures J. Amer. Statist. Assoc. 90 1995 577 588
    • (1995) J. Amer. Statist. Assoc. , vol.90 , pp. 577-588
    • Escobar, M.D.1    West, M.2
  • 7
    • 84972492387 scopus 로고
    • Inference from iterative simulation using multiple sequences (with discussion)
    • A. Gelman, and D.B. Rubin Inference from iterative simulation using multiple sequences (with discussion) Statist. Sci. 7 1992 457 511
    • (1992) Statist. Sci. , vol.7 , pp. 457-511
    • Gelman, A.1    Rubin, D.B.2
  • 8
    • 0345463555 scopus 로고
    • Discussion on representations of knowledge in complex systems (by U. Grenander and M. I. Miller)
    • P.J. Green Discussion on representations of knowledge in complex systems (by U. Grenander and M. I. Miller) J. R. Stat. Soc. Ser. B 56 1994 589 590
    • (1994) J. R. Stat. Soc. Ser. B , vol.56 , pp. 589-590
    • Green, P.J.1
  • 9
    • 77956889087 scopus 로고
    • Reversible jump Markov chain Monte carlo computation and Bayesian model determination
    • P.J. Green Reversible jump Markov chain Monte carlo computation and Bayesian model determination Biometrika 82 4 1995 711 732
    • (1995) Biometrika , vol.82 , Issue.4 , pp. 711-732
    • Green, P.J.1
  • 10
    • 0000281374 scopus 로고
    • Representations of knowledge in complex systema (with discussion)
    • U. Grenander, and M.I. Miller Representations of knowledge in complex systema (with discussion) J. R. Stat. Soc. Ser. B 56 1994 549 603
    • (1994) J. R. Stat. Soc. Ser. B , vol.56 , pp. 549-603
    • Grenander, U.1    Miller, M.I.2
  • 11
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chains and their applications
    • W.K. Hastings Monte Carlo sampling methods using Markov chains and their applications Biometrika 57 1970 97 109
    • (1970) Biometrika , vol.57 , pp. 97-109
    • Hastings, W.K.1
  • 12
    • 0036749869 scopus 로고    scopus 로고
    • Approximate Dirichlet process computing in finite normal mixtures: Smoothing and prior information
    • H. Ishwaran, and L.F. James Approximate Dirichlet process computing in finite normal mixtures: smoothing and prior information J. Comput. Graph. Statist. 11 3 2002 508 532
    • (2002) J. Comput. Graph. Statist. , vol.11 , Issue.3 , pp. 508-532
    • Ishwaran, H.1    James, L.F.2
  • 14
    • 0027229318 scopus 로고
    • Upper confidence limits on excess risk for quantitative responses
    • R.L. Kodell, and R.W. West Upper confidence limits on excess risk for quantitative responses Risk Anal. 13 1993 177 182
    • (1993) Risk Anal. , vol.13 , pp. 177-182
    • Kodell, R.L.1    West, R.W.2
  • 15
    • 0000391986 scopus 로고    scopus 로고
    • Testing for mixtures: A Bayesian entropy approach
    • K. Mengersen, and C. Robert Testing for mixtures: a Bayesian entropy approach J.O. Berger, J.M. Bernardo, A.P. Dawid, D.V. Lindley, A.F.M. Smith, Bayesian Statistics vol. 5 1996 Oxford University Press Oxford
    • (1996) Bayesian Statistics , vol.5
    • Mengersen, K.1    Robert, C.2
  • 18
    • 0015730787 scopus 로고
    • Optimum Monte-Carlo sampling using Markov chains
    • P.H. Peskun Optimum Monte-Carlo sampling using Markov chains Biometrika 60 1973 607 612
    • (1973) Biometrika , vol.60 , pp. 607-612
    • Peskun, P.H.1
  • 19
    • 0002013327 scopus 로고    scopus 로고
    • Bayesian model comparison via jump diffusions
    • D.B. Phillips, and A.F.M. Smith Bayesian model comparison via jump diffusions W.R. Gilks, S. Richardson, D.J. Spiegelhalter, Practical Markov Chain Monte Carlo 1996 Chapman and Hall London 215 239 (Chapter 13)
    • (1996) Practical Markov Chain Monte Carlo , pp. 215-239
    • Phillips, D.B.1    Smith, A.F.M.2
  • 20
    • 0000783674 scopus 로고    scopus 로고
    • Hypothesis testing and model selection
    • A.E. Raftery Hypothesis testing and model selection W.R. Gilks, S. Richardson, D.J. Spiegelhalter, Practical Markov Chain Monte Carlo 1996 Chapman and Hall London 163 188 (Chapter 10)
    • (1996) Practical Markov Chain Monte Carlo , pp. 163-188
    • Raftery, A.E.1
  • 21
    • 0033944220 scopus 로고    scopus 로고
    • Risk assessment for quantitative responses using a mixture model
    • M. Razzaghi, and R.L. Kodell Risk assessment for quantitative responses using a mixture model Biometrics 56 2000 519 527
    • (2000) Biometrics , vol.56 , pp. 519-527
    • Razzaghi, M.1    Kodell, R.L.2
  • 22
    • 18244378520 scopus 로고    scopus 로고
    • On Bayesian analysis of mixtures with an unknown number of components (with discussion)
    • S. Richardson, and P.J. Green On Bayesian analysis of mixtures with an unknown number of components (with discussion) J. R. Stat. Soc. Ser. B 59 4 1997 731 792
    • (1997) J. R. Stat. Soc. Ser. B , vol.59 , Issue.4 , pp. 731-792
    • Richardson, S.1    Green, P.J.2
  • 23
    • 21744460005 scopus 로고    scopus 로고
    • Practical Bayesian density estimation using mixtures of normals
    • K. Roeder, and L. Wasserman Practical Bayesian density estimation using mixtures of normals J. Amer. Statist. Assoc. 92 1997 894 902
    • (1997) J. Amer. Statist. Assoc. , vol.92 , pp. 894-902
    • Roeder, K.1    Wasserman, L.2
  • 24
    • 3042684740 scopus 로고    scopus 로고
    • Drug risk assessment with determining the number of sub-populations under finite mixture normal models
    • J. Tao, N.Z. Shi, and S.Y. Lee Drug risk assessment with determining the number of sub-populations under finite mixture normal models Comput. Statist. Data Anal. 46 2004 661 676
    • (2004) Comput. Statist. Data Anal. , vol.46 , pp. 661-676
    • Tao, J.1    Shi, N.Z.2    Lee, S.Y.3
  • 25
    • 0000576595 scopus 로고
    • Markov chains for exploring posterior distributions
    • L. Tierney Markov chains for exploring posterior distributions Ann. Statist. 22 1994 1701 1762
    • (1994) Ann. Statist. , vol.22 , pp. 1701-1762
    • Tierney, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.