-
3
-
-
3142617128
-
Discussion of "Consistency in boosting" by W. Jiang, G. Lugosi, N. Vayatis and T. Zhang
-
Friedman J, Hastie T, Rosset S, Tibshirani R and Zhu J(2004). Discussion of "Consistency in boosting" by W. Jiang, G. Lugosi, N. Vayatis and T. Zhang. Ann. Statist. 32, 102-107.
-
(2004)
Ann. Statist.
, vol.32
, pp. 102-107
-
-
Friedman, J.1
Hastie, T.2
Rosset, S.3
Tibshirani, R.4
Zhu, J.5
-
5
-
-
0036161259
-
Gene selection for cancer classification using support vector machines
-
DOI 10.1023/A:1012487302797
-
Guyon I, Weston J, Barnhill S and Vapnik V(2002). Gene selection for cancer classification using support vector machines. Machine Learning 46, 389-422. (Pubitemid 34129977)
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 389-422
-
-
Guyon, I.1
Weston, J.2
Barnhill, S.3
Vapnik, V.4
-
6
-
-
84898948710
-
Feature selection for svms
-
Weston J, Mukherjee S, Chapelle O, Pontil M, Poggio T and Vapnik V(2001). Feature selection for svms. Advances in Neural Information Processing Systems 13.
-
(2001)
Advances in Neural Information Processing Systems
, vol.13
-
-
Weston, J.1
Mukherjee, S.2
Chapelle, O.3
Pontil, M.4
Poggio, T.5
Vapnik, V.6
-
8
-
-
0036827078
-
Prediction of protein retention times in anion-exchange chromatography systems using support vector regression
-
Song M, Breneman C, Bi J, Sukumar N, Bennett K, Cramer S and Tugcu N(2002). Prediction of protein retention times in anion-exchange chromatography systems using support vector regression. J. Chemical Information and Computer Sciences.
-
(2002)
J. Chemical Information and Computer Sciences
-
-
Song, M.1
Breneman, C.2
Bi, J.3
Sukumar, N.4
Bennett, K.5
Cramer, S.6
Tugcu, N.7
-
9
-
-
43049089414
-
∞ norm support vector machine
-
∞ norm support vector machine. Statistica Sinica, 18, 379-398.
-
(2008)
Statistica Sinica
, vol.18
, pp. 379-398
-
-
Zou, H.1
Yuan, M.2
-
10
-
-
84884590277
-
-
Technical report, Department of Applied Mathematics, The Hong Kong Polytechnic University
-
p Minimization. Technical report, Department of Applied Mathematics, The Hong Kong Polytechnic University.
-
p Minimization
-
-
Chen, X.1
Xu, F.2
Ye, Y.3
-
14
-
-
33745817438
-
Combining SVMs with various feature selection strategies
-
New York: Springer
-
Chen Y and Lin C(2005). Combining SVMs with various feature selection strategies. Feature Extraction, Foundations and Applications. New York: Springer: 319-328.
-
(2005)
Feature Extraction, Foundations and Applications
, pp. 319-328
-
-
Chen, Y.1
Lin, C.2
-
16
-
-
0003710385
-
-
Technical Report 99-03,Data Mining Institute, Computer Science Department, University of Wisconsin,Madison,Wisconsin,September
-
Lee Y and Mangasarian O. SSVM: a smooth support vector machine, Technical Report 99-03,Data Mining Institute, Computer Science Department, University of Wisconsin,Madison,Wisconsin,September, 1999. ftp://ftp.cs.wisc.edu/pub/dmi/tech- reports/99-03.ps
-
(1999)
SSVM: A Smooth Support Vector Machine
-
-
Lee, Y.1
Mangasarian, O.2
-
17
-
-
77951160349
-
The concave-convex procedure (CCCP)
-
T. G. Dietterich, S. Becker, and Z. Ghahramani, editors, Cambridge, MA, MIT Press
-
Yuille A and Rangarajan A. The concave-convex procedure (CCCP). In T. G. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Information Processing Systems 14, Cambridge, MA, 2002. MIT Press.
-
(2002)
Advances in Neural Information Processing Systems
, vol.14
-
-
Yuille, A.1
Rangarajan, A.2
|