메뉴 건너뛰기




Volumn , Issue , 2009, Pages 101-114

Large Margin Training of Continuous Density Hidden Markov Models

Author keywords

Automatic speech recognition (ASR); CD HMMS and large margin training; CD HMMs parameter estimation and ASR and machine learning; CD HMMs trained by margin maximization; Continuous Density Hidden Markov Models (CD HMMs) and ASR; Hamming distance and margin constraints; Large margin training framework; minimum classification error (MCE) training and sequence misclassifications; Phonetic recognition in TIMIT speech corpus

Indexed keywords


EID: 78649306402     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1002/9780470742044.ch7     Document Type: Chapter
Times cited : (9)

References (27)
  • 1
    • 1942421209 scopus 로고    scopus 로고
    • Hidden Markov support vector machines
    • Proceedings of the 20th International Conference on Machine Learning (ICML-03) (eds. T Fawcett and N Mishra), Washington, DC. AAAI Press
    • Altun Y, Tsochantaridis I and Hofmann T 2003 Hidden Markov support vector machines. Proceedings of the 20th International Conference on Machine Learning (ICML-03) (eds. T Fawcett and N Mishra), Washington, DC. AAAI Press, pp. 3-10.
    • (2003) , pp. 3-10
    • Altun, Y.1    Tsochantaridis, I.2    Hofmann, T.3
  • 2
    • 0022890536 scopus 로고
    • Maximum mutual information estimation of hidden Markov model parameters for speech recognition
    • Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, Tokyo
    • Bahl LR, Brown PF, de Souza PV and Mercer RL 1986 Maximum mutual information estimation of hidden Markov model parameters for speech recognition. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, Tokyo, pp. 49-52.
    • (1986) , pp. 49-52
    • Bahl, L.R.1    Brown, P.F.2    De Souza, P.V.3    Mercer, R.L.4
  • 4
    • 34547546295 scopus 로고    scopus 로고
    • Incorporating training errors for large margin HMMs under semi-definite programming framework
    • Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP-07), Honolulu, HI
    • Jiang H and Li X 2007 Incorporating training errors for large margin HMMs under semi-definite programming framework. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP-07), Honolulu, HI, vol. 4, pp. 629-632.
    • (2007) , vol.4 , pp. 629-632
    • Jiang, H.1    Li, X.2
  • 6
    • 0026982122 scopus 로고
    • Discriminative learning for minimum error classification
    • Juang BH and Katagiri S 1992 Discriminative learning for minimum error classification. IEEE Transactions on Signal Processing 40(12), 3043-3054.
    • (1992) IEEE Transactions on Signal Processing , vol.40 , Issue.12 , pp. 3043-3054
    • Juang, B.H.1    Katagiri, S.2
  • 7
    • 0027228742 scopus 로고
    • MMI training for continuous phoneme recognition on the TIMIT database
    • Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP-93), Minneapolis, MN
    • Kapadia S, Valtchev V and Young S 1993 MMI training for continuous phoneme recognition on the TIMIT database. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP-93), Minneapolis, MN, vol. 2, pp. 491-494.
    • (1993) , vol.2 , pp. 491-494
    • Kapadia, S.1    Valtchev, V.2    Young, S.3
  • 8
    • 44949203874 scopus 로고    scopus 로고
    • Discriminative kernel-based phoneme sequence recognition
    • Proceedings of the International Conference on Spoken Language Processing (ICSLP-06), Pittsburgh, PA
    • Keshet J, Shalev-Shwartz S, Bengio S, Singer Y and Chazan D 2006 Discriminative kernel-based phoneme sequence recognition. Proceedings of the International Conference on Spoken Language Processing (ICSLP-06), Pittsburgh, PA.
    • (2006)
    • Keshet, J.1    Shalev-Shwartz, S.2    Bengio, S.3    Singer, Y.4    Chazan, D.5
  • 9
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • Proceedings of the 18th International Conference on Machine Learning (ICML-01). Morgan Kaufmann, San Francisco, CA
    • Lafferty J, McCallum A and Pereira FCN 2001 Conditional random fields: Probabilistic models for segmenting and labeling sequence data. Proceedings of the 18th International Conference on Machine Learning (ICML-01). Morgan Kaufmann, San Francisco, CA, pp. 282-289.
    • (2001) , pp. 282-289
    • Lafferty, J.1    McCallum, A.2    Pereira, F.C.N.3
  • 10
    • 0002583871 scopus 로고
    • Speech database development: design and analsysis of the acoustic-phonetic corpus
    • Proceedings of the DARPA Speech Recognition Workshop (ed. LS Baumann
    • Lamel LF, Kassel RH and Seneff S 1986 Speech database development: design and analsysis of the acoustic-phonetic corpus. Proceedings of the DARPA Speech Recognition Workshop (ed. LS Baumann), pp. 100-109.
    • (1986) , pp. 100-109
    • Lamel, L.F.1    Kassel, R.H.2    Seneff, S.3
  • 13
    • 33646799820 scopus 로고    scopus 로고
    • Large margin HMMs for speech recognition
    • Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP-05), Philadelphia, PA
    • Li X, Jiang H and Liu C 2005 Large margin HMMs for speech recognition. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP-05), Philadelphia, PA, pp. 513-516.
    • (2005) , pp. 513-516
    • Li, X.1    Jiang, H.2    Liu, C.3
  • 15
    • 0020796537 scopus 로고
    • A decision-theoretic formulation of a training problem in speech recognition and a comparison of training by unconditional versus conditional maximum likelihood
    • Nádas A 1983 A decision-theoretic formulation of a training problem in speech recognition and a comparison of training by unconditional versus conditional maximum likelihood. IEEE Transactions on Acoustics, Speech and Signal Processing 31(4), 814-817.
    • (1983) IEEE Transactions on Acoustics, Speech and Signal Processing , vol.31 , Issue.4 , pp. 814-817
    • Nádas, A.1
  • 16
    • 51449120120 scopus 로고    scopus 로고
    • Boosted MMI for model and feature-space discriminative training
    • Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP-08), Las Vegas, NV
    • Povey D, Kanevsky D, Kingsbury B, Ramabhadran B, Saon G and Visweswariah K 2008 Boosted MMI for model and feature-space discriminative training. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP-08), Las Vegas, NV.
    • (2008)
    • Povey, D.1    Kanevsky, D.2    Kingsbury, B.3    Ramabhadran, B.4    Saon, G.5    Visweswariah, K.6
  • 17
    • 0036296863 scopus 로고    scopus 로고
    • Minimum phone error and i-smoothing for improved discriminative training
    • Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP-02), Orlando, FL
    • Povey D and Woodland P 2002 Minimum phone error and i-smoothing for improved discriminative training. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP-02), Orlando, FL, pp. 105-108.
    • (2002) , pp. 105-108
    • Povey, D.1    Woodland, P.2
  • 18
    • 0028392167 scopus 로고
    • An application of recurrent nets to phone probability estimation
    • Robinson T 1994 An application of recurrent nets to phone probability estimation. IEEE Transactions on Neural Networks 5(2), 298-305.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , Issue.2 , pp. 298-305
    • Robinson, T.1
  • 19
    • 33745205296 scopus 로고    scopus 로고
    • Optimization methods for discriminative training
    • Proceedings of 9th European Conference on Speech Communication and Technology (EuroSpeech-05), Lisbon, Portugal
    • Roux JL and McDermott E 2005 Optimization methods for discriminative training. Proceedings of 9th European Conference on Speech Communication and Technology (EuroSpeech-05), Lisbon, Portugal, pp. 3341-3344.
    • (2005) , pp. 3341-3344
    • Roux, J.L.1    McDermott, E.2
  • 20
    • 47749143126 scopus 로고    scopus 로고
    • Large margin training of acoustic models
    • for speech recognition University of Pennsylvania, Philadelphia, PA, PhD thesis
    • Sha F 2007 Large margin training of acoustic models for speech recognition University of Pennsylvania, Philadelphia, PA, PhD thesis.
    • (2007)
    • Sha, F.1
  • 21
    • 33947686745 scopus 로고    scopus 로고
    • Large margin Gaussian mixture modeling for phonetic classification and recognition
    • Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP-06), Toulouse, France
    • Sha F and Saul LK 2006 Large margin Gaussian mixture modeling for phonetic classification and recognition. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP-06), Toulouse, France, pp. 265-268.
    • (2006) , pp. 265-268
    • Sha, F.1    Saul, L.K.2
  • 22
    • 34547522370 scopus 로고    scopus 로고
    • Comparison of large margin training to other discriminative methods for phonetic recognition by hidden Markov models
    • Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP-07), Honolulu, HI
    • Sha F and Saul LK 2007a Comparison of large margin training to other discriminative methods for phonetic recognition by hidden Markov models. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP-07), Honolulu, HI, pp. 313-316.
    • (2007) , pp. 313-316
    • Sha, F.1    Saul, L.K.2
  • 23
    • 84864038630 scopus 로고    scopus 로고
    • Large margin hidden Markov models for automatic speech recognition
    • Advances in Neural Information Processing Systems 19 (eds. B Schölkopf, J Platt and T Hofmann). MIT Press, Cambridge, MA
    • Sha F and Saul LK 2007b Large margin hidden Markov models for automatic speech recognition. Advances in Neural Information Processing Systems 19 (eds. B Schölkopf, J Platt and T Hofmann). MIT Press, Cambridge, MA, pp. 1249-1256.
    • (2007) , pp. 1249-1256
    • Sha, F.1    Saul, L.K.2
  • 24
    • 84898948585 scopus 로고    scopus 로고
    • Max-margin Markov networks
    • Advances in Neural Information Processing Systems (NIPS 16) (eds. S Thrun, L Saul and B Schölkopf). MIT Press, Cambridge, MA
    • Taskar B, Guestrin C and Koller D 2004 Max-margin Markov networks. Advances in Neural Information Processing Systems (NIPS 16) (eds. S Thrun, L Saul and B Schölkopf). MIT Press, Cambridge, MA, pp. 25-32.
    • (2004) , pp. 25-32
    • Taskar, B.1    Guestrin, C.2    Koller, D.3
  • 26
    • 0036461035 scopus 로고    scopus 로고
    • Large scale discriminative training of hidden Markov models for speech recognition
    • Woodland PC and Povey D 2002 Large scale discriminative training of hidden Markov models for speech recognition. Computer Speech and Language 16, 25-47.
    • (2002) Computer Speech and Language , vol.16 , pp. 25-47
    • Woodland, P.C.1    Povey, D.2
  • 27
    • 34547501897 scopus 로고    scopus 로고
    • Use of incrementally regulated discriminative margins in MCE training for speech recognition
    • Proceedings of the International Conference on Spoken Language Processing (ICSLP-06), Pittsburgh, PA
    • Yu D, Deng L, He X and Acero A 2006 Use of incrementally regulated discriminative margins in MCE training for speech recognition. Proceedings of the International Conference on Spoken Language Processing (ICSLP-06), Pittsburgh, PA, pp. 2418-2421.
    • (2006) , pp. 2418-2421
    • Yu, D.1    Deng, L.2    He, X.3    Acero, A.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.