-
1
-
-
67649202516
-
Modal analysis of a nonlinear periodic structure with cyclic symmetry
-
Georgiades, F., Peeters, M., Kerschen, G., and Golinval, J., 2009, "Modal Analysis of a Nonlinear Periodic Structure With Cyclic Symmetry", AIAA J., 47, pp. 1014-1025.
-
(2009)
AIAA J.
, vol.47
, pp. 1014-1025
-
-
Georgiades, F.1
Peeters, M.2
Kerschen, G.3
Golinval, J.4
-
2
-
-
0027606944
-
A multiple-scales analysis of nonlinear, localized modes in a cyclic periodic system
-
Vakakis, A. F., 1993, "A Multiple-Scales Analysis of Nonlinear, Localized Modes in a Cyclic Periodic System", ASME J. Appl. Mech., 60, pp. 388-397.
-
(1993)
ASME J. Appl. Mech.
, vol.60
, pp. 388-397
-
-
Vakakis, A.F.1
-
3
-
-
0031238193
-
Subharmonic oscillations in harmonically excited mechanical systems with cyclic symmetry
-
Samaranayake, S., 1997, "Subharmonic Oscillations in Harmonically Excited Mechanical Systems With Cyclic Symmetry", J. Sound Vib., 206 (1), pp. 39-60.
-
(1997)
J. Sound Vib.
, vol.206
, Issue.1
, pp. 39-60
-
-
Samaranayake, S.1
-
4
-
-
0030780655
-
Non-linear normal modes (NNMs) and their applications in vibration theory: An overview
-
Vakakis, A. F., 1997, "Non-Linear Normal Modes (NNMs) and Their Applications in Vibration Theory: An Overview", Mech. Syst. Signal Process., 11 (1), pp. 3-22.
-
(1997)
Mech. Syst. Signal Process.
, vol.11
, Issue.1
, pp. 3-22
-
-
Vakakis, A.F.1
-
5
-
-
53849093038
-
Nonlinear normal modes, Part I: A useful framework for the structural dynamicist
-
Kerschen, G., Peeters, M., Golinval, J., and Vakakis, A. F., 2009, "Nonlinear Normal Modes, Part I: A Useful Framework for the Structural Dynamicist", Mech. Syst. Signal Process., 23, pp. 170-194.
-
(2009)
Mech. Syst. Signal Process.
, vol.23
, pp. 170-194
-
-
Kerschen, G.1
Peeters, M.2
Golinval, J.3
Vakakis, A.F.4
-
7
-
-
0027040891
-
Dynamics of a nonlinear periodic structure with cyclic symmetry
-
Vakakis, A. F., 1992, "Dynamics of a Nonlinear Periodic Structure With Cyclic Symmetry", Acta Mech., 95, pp. 197-226.
-
(1992)
Acta Mech.
, vol.95
, pp. 197-226
-
-
Vakakis, A.F.1
-
8
-
-
53849083425
-
Nonlinear normal modes, Part II: Toward a practical computation using continuation technique
-
Peeters, M., Kerschen, G., Vigui, R., Srandour, G., and Golinval, J., 2009, "Nonlinear Normal Modes, Part II: Toward a Practical Computation Using Continuation Technique", Mech. Syst. Signal Process., 23, pp. 195-216.
-
(2009)
Mech. Syst. Signal Process
, vol.23
, pp. 195-216
-
-
Peeters, M.1
Kerschen, G.2
Vigui, R.3
Srandour, G.4
Golinval, J.5
-
9
-
-
0027610759
-
The effect of large vibration amplitudes on the mode shapes and natural frequencies of thin elastic structures, Part II: Fully clamped rectangular isotropic plates
-
Benamar, R., Bennouna, M., and White, R., 1993, "The Effect of Large Vibration Amplitudes on the Mode Shapes and Natural Frequencies of Thin Elastic Structures, Part II: Fully Clamped Rectangular Isotropic Plates", J. Sound Vib., 164 (2), pp. 295-316.
-
(1993)
J. Sound Vib.
, vol.164
, Issue.2
, pp. 295-316
-
-
Benamar, R.1
Bennouna, M.2
White, R.3
-
10
-
-
31644431511
-
Theory and experiments for large-amplitude vibrations of rectangular plates with geometric imperfections
-
DOI 10.1016/j.jsv.2005.06.007, PII S0022460X05003974
-
Amabili, M., 2006, "Theory and Experiments for Large-Amplitude Vibrations of Rectangular Plates With Geometric Imperfections", J. Sound Vib., 291, pp. 539-565. (Pubitemid 43172066)
-
(2006)
Journal of Sound and Vibration
, vol.291
, Issue.3-5
, pp. 539-565
-
-
Amabili, M.1
-
11
-
-
2342517458
-
Hardening/Softening behaviour in non linear oscillation of structural systems using non linear normal modes
-
Touzé, C, Thomas, O., and Chaigne, A., 2004, "Hardening/ Softening Behaviour in Non Linear Oscillation of Structural Systems Using Non Linear Normal Modes", J. Sound Vib., 273, pp. 77-101.
-
(2004)
J. Sound Vib.
, vol.273
, pp. 77-101
-
-
Touzé, C.1
Thomas, O.2
Chaigne, A.3
-
12
-
-
0031142628
-
Computational formulation for periodic vibration of geometrically nonlinear structures - Part 1: Theoretical background
-
PII S0020768396001278
-
Lewandowski, R., 1997, "Computational Formulation for Periodic Vibration of Geometrically Nonlinear Structures-Part 1: Theoretical Background", Int. J. Solids Struct., 34 (15), pp. 1925-1947. (Pubitemid 127425782)
-
(1997)
International Journal of Solids and Structures
, vol.34
, Issue.15
, pp. 1925-1947
-
-
Lewandowski, R.1
-
13
-
-
0031139750
-
Computational formulation for periodic vibration of geometrically nonlinear structures - Part 2: Numerical strategy and examples
-
PII S0020768396001266
-
Lewandowski, R., 1997, "Computational Formulation for Periodic Vibration of Geometrically Nonlinear Structures-Part 2: Numerical Strategy and Examples", Int. J. Solids Struct., 34 (15), pp. 1949-1964. (Pubitemid 127425783)
-
(1997)
International Journal of Solids and Structures
, vol.34
, Issue.15
, pp. 1949-1964
-
-
Lewandowski, R.1
-
14
-
-
0034155643
-
Non-linear free vibration of isotropic plates with internal resonance
-
Ribeiro, P., and Petyt, M., 2000, "Non-Linear Free Vibration of Isotropic Plates With Internal Resonance", Int. J. Non-Linear Mech., 35, pp. 263-278.
-
(2000)
Int. J. Non-Linear Mech.
, vol.35
, pp. 263-278
-
-
Ribeiro, P.1
Petyt, M.2
-
15
-
-
0027306241
-
Pb-2 rayleigh-ritz method for general plate analysis
-
Liew, K., and Wang, C, 1993, "pb-2 Rayleigh-Ritz Method for General Plate Analysis", Eng. Struct., 15 (1), pp. 55-60.
-
(1993)
Eng. Struct.
, vol.15
, Issue.1
, pp. 55-60
-
-
Liew, K.1
Wang, C.2
-
16
-
-
34247542144
-
Qualitative analysis of forced response of blisks with friction ring dampers
-
Laxalde, D., Thouverez, F., Sinou, J.-J., and Lombard, J.-P., 2007, "Qualitative Analysis of Forced Response of Blisks With Friction Ring Dampers", Eur. J. Mech. A/Solids, 26, pp. 676-687.
-
(2007)
Eur. J. Mech. A/Solids
, vol.26
, pp. 676-687
-
-
Laxalde, D.1
Thouverez, F.2
Sinou, J.-J.3
Lombard, J.-P.4
-
17
-
-
63549092696
-
Complex nonlinear modal analysis for mechanical systems: Application to turbomachinery bladings with friction interfaces
-
Laxalde, D., and Thouverez, F, 2009, "Complex Nonlinear Modal Analysis for Mechanical Systems: Application to Turbomachinery Bladings With Friction Interfaces", J. Sound Vib., 322, pp. 1009-1025.
-
(2009)
J. Sound Vib.
, vol.322
, pp. 1009-1025
-
-
Laxalde, D.1
Thouverez, F.2
-
18
-
-
0033117133
-
Nonlinear vibration of plates by the hierarchical finite element and continuation methods
-
Ribeiro, P., and Petyt, M., 1999, "Nonlinear Vibration of Plates by the Hierarchical Finite Element and Continuation Methods", Int. J. Mech. Sci., 41, pp. 437-459.
-
(1999)
Int. J. Mech. Sci.
, vol.41
, pp. 437-459
-
-
Ribeiro, P.1
Petyt, M.2
-
19
-
-
0003686039
-
-
Wiley-Interscience, New York
-
Nayfeh, A. H., and Balachandran, B., 1995, Applied Nonlinear Dynamics, Wiley-Interscience, New York.
-
(1995)
Applied Nonlinear Dynamics
-
-
Nayfeh, A.H.1
Balachandran, B.2
-
20
-
-
33645049419
-
On nonlinear vibration of systems with many degrees of freedom
-
Rosenberg, R., 1966, "On Nonlinear Vibration of Systems With Many Degrees of Freedom", Adv. Appl. Mech., 9, pp. 155-242.
-
(1966)
Adv. Appl. Mech.
, vol.9
, pp. 155-242
-
-
Rosenberg, R.1
-
21
-
-
0027911991
-
Normal modes for non-linear vibratory systems
-
Shaw, S., and Pierre, C, 1993, "Normal Modes for Non-Linear Vibratory Systems", J. Sound Vib., 164 (1), pp. 85-124.
-
(1993)
J. Sound Vib.
, vol.164
, Issue.1
, pp. 85-124
-
-
Shaw, S.1
Pierre, C.2
-
22
-
-
45649083119
-
Vibration mechanism of a mistuned bladed-disk
-
Yan, Y J., Cui, P. L., and Hao, H. N., 2008, "Vibration Mechanism of a Mistuned Bladed-Disk", J. Sound Vib., 317, pp. 294-307.
-
(2008)
J. Sound Vib.
, vol.317
, pp. 294-307
-
-
Yan, Y.J.1
Cui, P.L.2
Hao, H.N.3
-
23
-
-
0029229780
-
A very complicated structure of resonances in a nonlinear system with cyclic symmetry: Non linear forced localization
-
Vakakis, A. F, and King, M., 1995, "A Very Complicated Structure of Resonances in a Nonlinear System With Cyclic Symmetry: Non Linear Forced Localization", Nonlinear Dyn., 7, pp. 85-104.
-
(1995)
Nonlinear Dyn.
, vol.7
, pp. 85-104
-
-
Vakakis, A.F.1
King, M.2
|