메뉴 건너뛰기




Volumn 4, Issue 6, 2010, Pages 917-925

Margin-Based discriminative training for string recognition

Author keywords

Handwriting recognition; large vocabulary continuous speech recognition; margin based training; part of speech tagging

Indexed keywords

ADDITIONAL LOSS; AUDIO DATA; DE FACTO STANDARD; DISCRIMINATIVE TRAINING; GENERALIZATION BOUND; HANDWRITING RECOGNITION; LARGE VOCABULARY CONTINUOUS SPEECH RECOGNITION; LARGE-MARGIN CLASSIFIERS; LOSS FUNCTIONS; MARGIN-BASED TRAINING; MAXIMUM MUTUAL INFORMATION; MINIMUM PHONE ERROR; PART OF SPEECH TAGGING; SMOOTH APPROXIMATION;

EID: 78649262962     PISSN: 19324553     EISSN: None     Source Type: Journal    
DOI: 10.1109/JSTSP.2010.2076110     Document Type: Article
Times cited : (14)

References (34)
  • 1
    • 34250759640 scopus 로고    scopus 로고
    • Investigations on error minimizing training criteria for discriminative training in automatic speech recognition
    • Sep.
    • W. Macherey, L. Haferkamp, R. Schlüter, and H. Ney, "Investigations on error minimizing training criteria for discriminative training in automatic speech recognition," in Proc. Interspeech, Lisbon, Portugal, Sep. 2005.
    • (2005) Proc. Interspeech, Lisbon, Portugal
    • MacHerey, W.1    Haferkamp, L.2    Schlüter, R.3    Ney, H.4
  • 2
    • 85032750905 scopus 로고    scopus 로고
    • Discriminative learning in sequential pattern recognition\A unifying review for optimization-oriented speech recognition
    • Sep.
    • X. He, L. Deng, and W. Chou, "Discriminative learning in sequential pattern recognition\A unifying review for optimization-oriented speech recognition," IEEE Signal Process. Mag., vol. 25, no. 5, pp. 14-36, Sep. 2008.
    • (2008) IEEE Signal Process. Mag. , vol.25 , Issue.5 , pp. 14-36
    • He, X.1    Deng, L.2    Chou, W.3
  • 4
    • 56149090025 scopus 로고    scopus 로고
    • A fast optimization method for large margin estimation of HMMs based on second order cone programming
    • Aug.
    • Y. Yin and H. Jiang, "A fast optimization method for large margin estimation of HMMs based on second order cone programming," in Proc. Interspeech, Antwerp, Belgium, Aug. 2007.
    • (2007) Proc. Interspeech, Antwerp, Belgium
    • Yin, Y.1    Jiang, H.2
  • 5
    • 34547522370 scopus 로고    scopus 로고
    • Comparison of large margin training to other discriminative methods for phonetic recognition by hidden Markov models
    • Honolulu, HI, Apr.
    • F. Sha and L. Saul, "Comparison of large margin training to other discriminative methods for phonetic recognition by hidden Markov models," in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP), Honolulu, HI, Apr. 2007.
    • (2007) Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP)
    • Sha, F.1    Saul, L.2
  • 6
    • 34547546295 scopus 로고    scopus 로고
    • Incorporating training errors for large margin HMMs under semi-definite programming framework
    • Honolulu, HI, USA, Apr.
    • H. Jiang and X. Li, "Incorporating training errors for large margin HMMs under semi-definite programming framework," in IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP), Honolulu, HI, USA, Apr. 2007, pp. 313-316.
    • (2007) IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP) , pp. 313-316
    • Jiang, H.1    Li, X.2
  • 8
    • 42949105203 scopus 로고    scopus 로고
    • Large-margin minimum classification error training: A theoretical risk minimization perspective
    • D. Yu, L. Deng, X. He, and A. Acero, "Large-margin minimum classification error training: A theoretical risk minimization perspective," Comput. Speech Lang., vol. 22, pp. 415-429, 2008.
    • (2008) Comput. Speech Lang. , vol.22 , pp. 415-429
    • Yu, D.1    Deng, L.2    He, X.3    Acero, A.4
  • 9
    • 84867211272 scopus 로고    scopus 로고
    • Penalty function maximization for large margin HMM training
    • Australia, Sep.
    • G. Saon and D. Povey, "Penalty function maximization for large margin HMM training," in Proc. Interspeech, Brisbane, Australia, Sep. 2008.
    • (2008) Proc. Interspeech, Brisbane
    • Saon, G.1    Povey, D.2
  • 12
    • 70450194926 scopus 로고    scopus 로고
    • Margin-space integration of MPE loss via differencing of MMI functionals for generalized error-weighted discriminative training
    • Brighton, U.K. Sep.
    • E. McDermott, S. Watanabe, and A. Nakamura, "Margin-space integration of MPE loss via differencing of MMI functionals for generalized error-weighted discriminative training," in Proc. Interspeech, Brighton, U.K., Sep. 2009.
    • (2009) Proc. Interspeech
    • McDermott, E.1    Watanabe, S.2    Nakamura, A.3
  • 13
  • 15
    • 1942420344 scopus 로고    scopus 로고
    • Modified logistic regression: An approximation to SVM and its applications in large-scale text categorization
    • Aug.
    • J. Zhang, R. Jin, Y. Yang, and A. Hauptmann, "Modified logistic regression: An approximation to SVM and its applications in large-scale text categorization," in Proc. Int. Conf. Mach. Learn. (ICML), Aug. 2003.
    • (2003) Proc. Int. Conf. Mach. Learn. (ICML)
    • Zhang, J.1    Jin, R.2    Yang, Y.3    Hauptmann, A.4
  • 17
    • 84867215610 scopus 로고    scopus 로고
    • Flexible discriminative training based on equal error group scores obtained from an error-indexed forward-backward algorithm
    • Australia, Sep.
    • E. McDermott and A. Nakamura, "Flexible discriminative training based on equal error group scores obtained from an error-indexed forward-backward algorithm," in Proc. Interspeech, Brisbane, Australia, Sep. 2008.
    • (2008) Proc. Interspeech, Brisbane
    • McDermott, E.1    Nakamura, A.2
  • 20
    • 33745200532 scopus 로고    scopus 로고
    • Discriminative training with tied covariance matrices
    • Jeju Island, Korea, Oct.
    • W. Macherey, R. Schlüter, and H. Ney, "Discriminative training with tied covariance matrices," in Proc. Interspeech, Jeju Island, Korea, Oct. 2004.
    • (2004) Proc. Interspeech
    • MacHerey, W.1    Schlüter, R.2    Ney, H.3
  • 21
    • 84943274699 scopus 로고
    • A direct adaptive method for faster back-propagation learning: The Rprop algorithm
    • San Francisco, CA
    • M. Riedmiller and H. Braun, "A direct adaptive method for faster back-propagation learning: The Rprop algorithm," in Proc. IEEE Int. Conf. Neural Networks (ICNN), San Francisco, CA, 1993, pp. 586-592.
    • (1993) Proc. IEEE Int. Conf. Neural Networks (ICNN) , pp. 586-592
    • Riedmiller, M.1    Braun, H.2
  • 23
    • 84956895120 scopus 로고    scopus 로고
    • The French Media/Evalda project: The evaluation of the understanding capability of spoken language dialog systems
    • Lisbon, Portugal May
    • L. Devillers, H. Maynard, and S. Rosset et al., "The French Media/Evalda project: The evaluation of the understanding capability of spoken language dialog systems," in Proc. Int. Conf. Lang. Resources Eval. (LREC), Lisbon, Portugal, May 2004.
    • (2004) Proc. Int. Conf. Lang. Resources Eval. (LREC)
    • Devillers, L.1    Maynard, H.2    Rosset, S.3
  • 24
    • 0142192295 scopus 로고    scopus 로고
    • Conditional Random fields: Probabilistic models for segmenting and labeling sequence data
    • San Francisco, CA, Jun.-Jul.
    • J. Lafferty, A. McCallum, and F. Pereira, "Conditional random fields: Probabilistic models for segmenting and labeling sequence data," in Proc. Int. Conf. Mach. Learn. (ICML), San Francisco, CA, Jun.-Jul. 2001.
    • (2001) Proc. Int. Conf. Mach. Learn. (ICML)
    • Lafferty, J.1    McCallum, A.2    Pereira, F.3
  • 25
    • 71249102605 scopus 로고    scopus 로고
    • Confidence-based discriminative training for model adaptation in offline Arabic handwriting recognition
    • Barcelona, Spain Jul.
    • P. Dreuw, G. Heigold, and H. Ney, "Confidence-based discriminative training for model adaptation in offline Arabic handwriting recognition," in Proc. Int. Conf. Document Anal. Recogn. (ICDAR), Barcelona, Spain, Jul. 2009.
    • (2009) Proc. Int. Conf. Document Anal. Recogn. (ICDAR)
    • Dreuw, P.1    Heigold, G.2    Ney, H.3
  • 26
    • 4544386225 scopus 로고    scopus 로고
    • Bootstrap estimates for confidence intervals in ASR performance evaluation
    • Montreal, QC, Canada, May
    • M. Bisani and H. Ney, "Bootstrap estimates for confidence intervals in ASR performance evaluation," in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP), Montreal, QC, Canada, May 2004, pp. 409-412.
    • (2004) Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP) , pp. 409-412
    • Bisani, M.1    Ney, H.2
  • 27
    • 0030362755 scopus 로고    scopus 로고
    • A comparative study of linear feature transformation techniques for automatic speech recognition
    • Philadelphia, PA, Oct.
    • T. Eisele, R. Haeb-Umbach, and D. Langmann, "A comparative study of linear feature transformation techniques for automatic speech recognition," in Proc. Int. Conf. Spoken Lang. Process. (ICSLP), Philadelphia, PA, Oct. 1996.
    • (1996) Proc. Int. Conf. Spoken Lang. Process. (ICSLP)
    • Eisele, T.1    Haeb-Umbach, R.2    Langmann, D.3
  • 28
    • 70450161334 scopus 로고    scopus 로고
    • Investigations on convex optimization using log-linear HMMs for digit string recognition
    • Sep.
    • G. Heigold, D. Rybach, R. Schlüter, and H. Ney, "Investigations on convex optimization using log-linear HMMs for digit string recognition," in Proc. Interspeech, Brighton, U.K., Sep. 2009.
    • (2009) Proc. Interspeech, Brighton, U.K.
    • Heigold, G.1    Rybach, D.2    Schlüter, R.3    Ney, H.4
  • 31
    • 70450218196 scopus 로고    scopus 로고
    • Optimizing CRFs for SLU tasks in various languages using modified training criteria
    • Sep.
    • S. Hahn, P. Lehnen, G. Heigold, and H. Ney, "Optimizing CRFs for SLU tasks in various languages using modified training criteria," in Proc. Interspeech, Brighton, U.K., Sep. 2009.
    • (2009) Proc. Interspeech, Brighton, U.K.
    • Hahn, S.1    Lehnen, P.2    Heigold, G.3    Ney, H.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.