메뉴 건너뛰기




Volumn , Issue , 2010, Pages

Meta-learning for time series forecasting in the NN GC1 competition

Author keywords

[No Author keywords available]

Indexed keywords

COMBINATION MODELS; DATA SETS; EMPIRICAL STUDIES; FORECASTING METHODS; METALEARNING; RANKING ALGORITHM; SPECIFIC PROBLEMS; TIME SERIES FORECASTING;

EID: 78549294511     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/FUZZY.2010.5584001     Document Type: Conference Paper
Times cited : (15)

References (33)
  • 1
    • 0034288943 scopus 로고    scopus 로고
    • An application of rule-based forecasting to a situation lacking domain knowledge
    • M. Adya, J. Armstrong, F. Collopy and M. Kennedy, "An application of rule-based forecasting to a situation lacking domain knowledge, " International Journal of Forecasting 16 (4), 2001, pp. 477-484.
    • (2001) International Journal of Forecasting , vol.16 , Issue.4 , pp. 477-484
    • Adya, M.1    Armstrong, J.2    Collopy, F.3    Kennedy, M.4
  • 2
    • 0035315158 scopus 로고    scopus 로고
    • Automatic identification of time series features for rule-based forecasting
    • M. Adya, F. Collopy, J. Armstrong and M. Kennedy, "Automatic identification of time series features for rule-based forecasting," International Journal of Forecasting 17 (2), 2001, pp. 143-157.
    • (2001) International Journal of Forecasting , vol.17 , Issue.2 , pp. 143-157
    • Adya, M.1    Collopy, F.2    Armstrong, J.3    Kennedy, M.4
  • 3
    • 33747888847 scopus 로고    scopus 로고
    • Persistence in forecasting performance and conditional combination strategies
    • M. Aiolfi and A. Timmermann, "Persistence in Forecasting Performance and Conditional Combination Strategies," Journal of Econometrics 127 (1-2), 2006, pp. 31-53.
    • (2006) Journal of Econometrics , vol.127 , Issue.1-2 , pp. 31-53
    • Aiolfi, M.1    Timmermann, A.2
  • 4
    • 0031141263 scopus 로고    scopus 로고
    • Combining and selecting forecasting models using rule based induction
    • B. Arinze, S.-L. Kim and M. Anandarajan, "Combining and selecting forecasting models using rule based induction," Computers & Operations Research 24 (5), 1997, pp. 423-433.
    • (1997) Computers & Operations Research , vol.24 , Issue.5 , pp. 423-433
    • Arinze, B.1    Kim, S.-L.2    Anandarajan, M.3
  • 6
    • 0037361994 scopus 로고    scopus 로고
    • Ranking learning algorithms: Using IBL and meta-learning on accuracy and time results
    • P. Brazdil, C. Soares and J. Pinto de Costa, "Ranking Learning Algorithms: Using IBL and meta-learning on accuracy and time results," Machine Learning 50 (3), 2003, pp. 251-277.
    • (2003) Machine Learning , vol.50 , Issue.3 , pp. 251-277
    • Brazdil, P.1    Soares, C.2    De Costa, J.P.3
  • 7
    • 0016522307 scopus 로고    scopus 로고
    • A bayesian approach to the linear combination of forecasts
    • D. Bunn, "A bayesian approach to the linear combination of forecasts," Operational Research Quarterly 26 (2), pp. 325-329.
    • Operational Research Quarterly , vol.26 , Issue.2 , pp. 325-329
    • Bunn, D.1
  • 8
    • 0000167087 scopus 로고
    • Rule-based forecasting: Development and validation of an expert systems approach to combining time series extrapolations
    • F. Collopy and S.J. Armstrong, "Rule-based forecasting: Development and validation of an expert systems approach to combining time series extrapolations," Management Science 38 (10), 1992, pp. 1394-1414.
    • (1992) Management Science , vol.38 , Issue.10 , pp. 1394-1414
    • Collopy, F.1    Armstrong, S.J.2
  • 11
    • 78549267748 scopus 로고    scopus 로고
    • Delft Center for Systems and Control, [Online], Available online, 13/06/
    • Delft Center for Systems and Control, "Matlab toolbox ARMASA[Online]". Available online: http://www.dcsc.tudelft.nl/Research/ Software[13/06/2007].
    • (2007) Matlab Toolbox ARMASA
  • 12
    • 0037250419 scopus 로고    scopus 로고
    • Forecast combination and encompassing tests
    • Y. Fang, "Forecast combination and encompassing tests," International Journal of Forecasting 19 (1), 2003, pp. 87-94.
    • (2003) International Journal of Forecasting , vol.19 , Issue.1 , pp. 87-94
    • Fang, Y.1
  • 14
    • 67649359699 scopus 로고    scopus 로고
    • Forecasting with unobserved components time series models
    • G. Elliott, C. Granger and A. Timmermann (Eds.) Elsevier
    • A. Harvey, "Forecasting with unobserved components time series models,", In: G. Elliott, C. Granger and A. Timmermann (Eds.), "Handbook of Economic Forecasting," Elsevier, 2006, pp. 327-408.
    • (2006) Handbook of Economic Forecasting , pp. 327-408
    • Harvey, A.1
  • 16
    • 0000153354 scopus 로고    scopus 로고
    • Noemon: Design, implementaion and performance results of an intelligent assistant for classifier selection
    • A. Kalousi and T. Theoharis, "Noemon: design, implementaion and performance results of an intelligent assistant for classifier selection", Intelligent Data Analysis 5 (3), 1999, pp. 319-337.
    • (1999) Intelligent Data Analysis , vol.5 , Issue.3 , pp. 319-337
    • Kalousi, A.1    Theoharis, T.2
  • 17
    • 78549294776 scopus 로고    scopus 로고
    • On the benefit of using time series features for choosing a forecasting method
    • Porvoo, Finland
    • C. Lemke and B. Gabrys, "On the benefit of using time series features for choosing a forecasting method," Proc. European Symposium on Time Series Prediction, Porvoo, Finland, 2008, pp. 1-10.
    • (2008) Proc. European Symposium on Time Series Prediction , pp. 1-10
    • Lemke, C.1    Gabrys, B.2
  • 19
    • 0017846358 scopus 로고
    • On a measure of a lack of fit in time series models
    • G. M. Ljung and G. E. P. Box, "On a Measure of a Lack of Fit in Time Series Models," Biometrika 65, 1978, pp. 297-303.
    • (1978) Biometrika , vol.65 , pp. 297-303
    • Ljung, G.M.1    Box, G.E.P.2
  • 21
    • 0034288942 scopus 로고    scopus 로고
    • The M3-competition: Results, conclusions and implications
    • S. Makridakis and M. Hibon, "The M3-Competition: Results, Conclusions and Implications," International Journal of Forecasting, 16 (4), 2000, pp. 451-476.
    • (2000) International Journal of Forecasting , vol.16 , Issue.4 , pp. 451-476
    • Makridakis, S.1    Hibon, M.2
  • 22
    • 0011936429 scopus 로고    scopus 로고
    • Evidence for the selection of forecasting methods
    • N. Meade, "Evidence for the selection of forecasting methods," International Journal of Forecasting 6 (19), 2000, pp. 515-535.
    • (2000) International Journal of Forecasting , vol.6 , Issue.19 , pp. 515-535
    • Meade, N.1
  • 23
    • 0000209313 scopus 로고
    • Experience with forecasting univariate time series and the combination of forecasts
    • P. Newbold and C. Granger, C., "Experience with forecasting univariate time series and the combination of forecasts," Journal of the Royal Statistical Society Series A (General) 137 (2)", 1974, pp. 131-165.
    • (1974) Journal of the Royal Statistical Society Series A (General) , vol.137 , Issue.2 , pp. 131-165
    • Newbold, P.1    Granger, C.2
  • 24
    • 0012862886 scopus 로고    scopus 로고
    • Commentaries on the M3-competition
    • K. Ord, "Commentaries on the M3-competition," International Journal of Forecasting 17, 2001, pp. 537-584.
    • (2001) International Journal of Forecasting , vol.17 , pp. 537-584
    • Ord, K.1
  • 25
    • 78549266755 scopus 로고    scopus 로고
    • Technical report, Institute of Statistical Science, Academia Sinica
    • J.-Y. Peng and J.A. D. Aston, "The ssm toolbox for matlab," Technical report, Institute of Statistical Science, Academia Sinica, 2007.
    • (2007) The Ssm Toolbox for Matlab
    • Peng, J.-Y.1    Aston, J.D.A.2
  • 27
    • 0142023273 scopus 로고    scopus 로고
    • Exponential smoothing with a damped multiplicative trend
    • J. W. Taylor, "Exponential smoothing with a damped multiplicative trend," International Journal of Forecasting 19 (4), 2003, pp. 715-725.
    • (2003) International Journal of Forecasting , vol.19 , Issue.4 , pp. 715-725
    • Taylor, J.W.1
  • 28
    • 0031537084 scopus 로고    scopus 로고
    • Model selection in univariate time series forecasting using discriminant analysis
    • C. Shah, "Model selection in univariate time series forecasting using discriminant analysis," International Journal of Forecasting 13 (4),1997, pp. 489-500.
    • (1997) International Journal of Forecasting , vol.13 , Issue.4 , pp. 489-500
    • Shah, C.1
  • 29
    • 67649372714 scopus 로고    scopus 로고
    • Forecast combinations
    • G. Elliott, C. Granger and A. Timmermann (Eds.), Elsevier
    • A. Timmermann, "Forecast combinations," In: G. Elliott, C. Granger and A. Timmermann (Eds.), "Handbook of Economic Forecasting," Elsevier, 2006, pp. 135-196.
    • (2006) Handbook of Economic Forecasting , pp. 135-196
    • Timmermann, A.1
  • 30
    • 0036791948 scopus 로고    scopus 로고
    • A perspective view and survey of metalearning
    • R. Vilalta and Y. Drissi, "A perspective view and survey of metalearning," Artificial Intelligence Review 18, 2002, pp. 77-95.
    • (2002) Artificial Intelligence Review , vol.18 , pp. 77-95
    • Vilalta, R.1    Drissi, Y.2
  • 31
    • 0030527289 scopus 로고    scopus 로고
    • Automatic feature identification and graphical support in rule-based forecasting: A comparison
    • R. Vokurka, B. Flores and S. Pearce, "Automatic feature identification and graphical support in rule-based forecasting: a comparison," International Journal of Forecasting 12 (4), 1996, pp. 495-512.
    • (1996) International Journal of Forecasting , vol.12 , Issue.4 , pp. 495-512
    • Vokurka, R.1    Flores, B.2    Pearce, S.3
  • 32
    • 67349267030 scopus 로고    scopus 로고
    • Rule induction for forecasting method selection: Meta-learning the characteristics of univariate time series
    • X. Wang, K. Smith-Miles and R. Hyndman, "Rule induction for forecasting method selection: Meta-learning the characteristics of univariate time series," Neurocomputing 72, 2009, pp. 2581-2594.
    • (2009) Neurocomputing , vol.72 , pp. 2581-2594
    • Wang, X.1    Smith-Miles, K.2    Hyndman, R.3
  • 33
    • 0003123930 scopus 로고    scopus 로고
    • Forecasting with artificial neural networks: The state of the art
    • G. Zhang, B. Patuwo and M. Hu, "Forecasting with artificial neural networks: The state of the art," International Journal of Forecasting 14 (1), 1998, pp. 35-62.
    • (1998) International Journal of Forecasting , vol.14 , Issue.1 , pp. 35-62
    • Zhang, G.1    Patuwo, B.2    Hu, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.