-
2
-
-
9644306576
-
Computationally efficient mining for fuzzy implication-based association rules in quantitative databases
-
Chen G., Yan P., Kerre E.E.: Computationally Efficient Mining for Fuzzy Implication-Based Association Rules in Quantitative Databases. International Journal of General Systems, 33, 163-182 (2004).
-
(2004)
International Journal of General Systems
, vol.33
, pp. 163-182
-
-
Chen, G.1
Yan, P.2
Kerre, E.E.3
-
3
-
-
26944491093
-
Fuzzy methods in machine learning and data mining: Status and prospects
-
Hüllermeier, E.: Fuzzy methods in machine learning and data mining: Status and prospects. Fuzzy Sets and Systems. 156, 387-406 (2005).
-
(2005)
Fuzzy Sets and Systems.
, vol.156
, pp. 387-406
-
-
Hüllermeier, E.1
-
4
-
-
9644306947
-
-
FIP
-
De Cock, M., Cornelis, C., Kerre, E.E.: Fuzzy Association Rules: A Two-Sided Approach. In: FIP, pp 385-390 (2003).
-
(2003)
Fuzzy Association Rules: A Two-Sided Approach
, pp. 385-390
-
-
De Cock, M.1
Cornelis, C.2
Kerre, E.E.3
-
5
-
-
33646831023
-
-
KES, Springer
-
Yan, P., Chen, G., Cornelis, C., De Cock, M., Kerre, E.E.: Mining Positive and Negative Fuzzy Association Rules. In: KES, pp. 270-276. Springer (2004).
-
(2004)
Mining Positive and Negative Fuzzy Association Rules
, pp. 270-276
-
-
Yan, P.1
Chen, G.2
Cornelis, C.3
De Cock, M.4
Kerre, E.E.5
-
6
-
-
9644252808
-
Elicitation of fuzzy association rules from positive and negative examples
-
De Cock, M., Cornelis, C., Kerre, E.E.: Elicitation of fuzzy association rules from positive and negative examples. Fuzzy Sets and Systems, 149, 73-85 (2005).
-
(2005)
Fuzzy Sets and Systems
, vol.149
, pp. 73-85
-
-
De Cock, M.1
Cornelis, C.2
Kerre, E.E.3
-
7
-
-
33744549830
-
Fuzzy versus quantitative association rules: A fair data-driven comparison
-
Verlinde, H., De Cock, M., Boute, R.: Fuzzy Versus Quantitative Association Rules: A Fair Data-Driven Comparison. IEEE Transactions on Systems, Man, and Cybernetics - Part B: Cybernetics, 36, 679-683 (2006).
-
(2006)
IEEE Transactions on Systems, Man, and Cybernetics - Part B: Cybernetics
, vol.36
, pp. 679-683
-
-
Verlinde, H.1
De Cock, M.2
Boute, R.3
-
8
-
-
33748458842
-
A systematic approach to the assessment of fuzzy association rules
-
Dubois, D., Hüllermeier, E., Prade, H.: A systematic approach to the assessment of fuzzy association rules. Data Min. Knowl. Discov., 13, 167-192 (2006).
-
(2006)
Data Min. Knowl. Discov.
, vol.13
, pp. 167-192
-
-
Dubois, D.1
Hüllermeier, E.2
Prade, H.3
-
9
-
-
7044250743
-
-
IFSA, Springer-Verlag
-
Dubois, D., Hüllermeier, E., Prade, H.: A Note on Quality Measures for Fuzzy Association Rules. In: IFSA, pp. 346-353. Springer-Verlag (2003).
-
(2003)
A Note on Quality Measures for Fuzzy Association Rules
, pp. 346-353
-
-
Dubois, D.1
Hüllermeier, E.2
Prade, H.3
-
10
-
-
34547097269
-
Defense of fuzzy association analysis
-
Hüllermeier, E., Yi, Y.: In Defense of Fuzzy Association Analysis. IEEE Transactions on Systems, Man, and Cybernetics - Part B: Cybernetics, 37, 1039-1043 (2007).
-
(2007)
IEEE Transactions on Systems, Man, and Cybernetics - Part B: Cybernetics
, vol.37
, pp. 1039-1043
-
-
Hüllermeier, E.1
Yi, Y.2
-
11
-
-
0027621699
-
Mining association rules between sets of items in large databases
-
Agrawal, R., Imielinski, T., Swami, A.N.: Mining Association Rules between Sets of Items in Large Databases. SIGMOD Record, 22, 207-216 (1993).
-
(1993)
SIGMOD Record
, vol.22
, pp. 207-216
-
-
Agrawal, R.1
Imielinski, T.2
Swami, A.N.3
-
13
-
-
0039253846
-
Mining frequent patterns without candidate generation
-
ACM Press
-
Han, J., Pei, J., Yin, Y.: Mining Frequent Patterns without Candidate Generation. In: SIGMOD Conference, pp. 1-12. ACM Press (2000).
-
(2000)
SIGMOD Conference
, pp. 1-12
-
-
Han, J.1
Pei, J.2
Yin, Y.3
-
14
-
-
2442449952
-
Mining frequent patterns without candidate generation: A frequent-pattern tree approach.
-
Han, J., Pei, J., Yin, Y., Mao, R.: Mining Frequent Patterns without Candidate Generation: A Frequent-Pattern Tree Approach. Data Mining and Knowledge Discovery, 8, 53-87 (2004).
-
(2004)
Data Mining and Knowledge Discovery
, vol.8
, pp. 53-87
-
-
Han, J.1
Pei, J.2
Yin, Y.3
Mao, R.4
-
16
-
-
0015644825
-
A fuzzy relative of the ISODATA process and its use in detecting compact well separated clusters
-
Dunn, J. C.: A Fuzzy Relative of the ISODATA Process and its Use in Detecting Compact, Well Separated Clusters. J. Cyber., 3, 32-57 (1974).
-
(1974)
J. Cyber.
, vol.3
, pp. 32-57
-
-
Dunn, J.C.1
-
17
-
-
0003630531
-
-
Wiley, New York
-
Hoppner, F., Klawonn, F., Kruse, R, Runkler, T.: Fuzzy Cluster Analysis, Methods for Classification, Data Analysis and Image Recognition. Wiley, New York (1999).
-
(1999)
Fuzzy Cluster Analysis, Methods for Classification, Data Analysis and Image Recognition
-
-
Hoppner, F.1
Klawonn, F.2
Kruse, R.3
Runkler, T.4
-
19
-
-
0000570991
-
-
IDEAL, Springer
-
Fu, A.W., Wong, M.H., Sze, S.C., Wong, W.C., Wong, W.L., Yu, W.K. Finding Fuzzy Sets for the Mining of Fuzzy Association Rules for Numerical Attributes. In: IDEAL, pp. 263-268. Springer (1998).
-
(1998)
Finding Fuzzy Sets for the Mining of Fuzzy Association Rules for Numerical Attributes
, pp. 263-268
-
-
Fu, A.W.1
Wong, M.H.2
Sze, S.C.3
Wong, W.C.4
Wong, W.L.5
Yu, W.K.6
-
20
-
-
84949778001
-
-
DEXA, Springer
-
Kaya, M., Alhajj, R., Polat, F., Arslan, A: Efficient Automated Mining of Fuzzy Association Rules. In: DEXA, pp. 133-142. Springer (2002).
-
(2002)
Efficient Automated Mining of Fuzzy Association Rules
, pp. 133-142
-
-
Kaya, M.1
Alhajj, R.2
Polat, F.3
Arslan, A.4
|