-
2
-
-
60649095294
-
Unified inference for variational Bayesian linear Gaussian state-space models
-
Cambridge, MA, The MIT Press
-
D. Barber and S. Chiappa, "Unified inference for variational Bayesian linear Gaussian state-space models," in Advances in Neural Information Processing Systems 20, Cambridge, MA, 2007, The MIT Press.
-
(2007)
Advances in Neural Information Processing Systems
, vol.20
-
-
Barber, D.1
Chiappa, S.2
-
3
-
-
0038132747
-
An unsupervised ensemble learning method for nonlinear dynamic state-space models
-
H. Valpola and J. Karhunen, "An unsupervised ensemble learning method for nonlinear dynamic state-space models," Neural Computation, vol. 14, no. 11, pp. 2647-2692, 2002.
-
(2002)
Neural Computation
, vol.14
, Issue.11
, pp. 2647-2692
-
-
Valpola, H.1
Karhunen, J.2
-
4
-
-
78449271036
-
System identification in Gaussian process dynamical systems
-
Whistler, BC, Canada
-
R. Turner, M. P. Deisenroth, and C. Rasmussen, "System identification in Gaussian process dynamical systems," in Nonparametric Bayes Workshop (NIPS 2009), Whistler, BC, Canada, 2009.
-
(2009)
Nonparametric Bayes Workshop (NIPS 2009)
-
-
Turner, R.1
Deisenroth, M.P.2
Rasmussen, C.3
-
5
-
-
0346724352
-
Hierarchical models of variance sources
-
H. Valpola, M. Harva, and J. Karhunen, "Hierarchical models of variance sources," Signal Processing, vol. 84, no. 2, pp. 267-282, 2004.
-
(2004)
Signal Processing
, vol.84
, Issue.2
, pp. 267-282
-
-
Valpola, H.1
Harva, M.2
Karhunen, J.3
-
6
-
-
67649497847
-
Stochastic volatility
-
C. R. Rao and G. S. Maddala, Eds., North-Holland, Amsterdam
-
E. Ghysels, A. C. Harvey, and E. Renault, "Stochastic volatility," in Statistical Methods in Finance, C. R. Rao and G. S. Maddala, Eds., pp. 119-191. North-Holland, Amsterdam, 1996.
-
(1996)
Statistical Methods in Finance
, pp. 119-191
-
-
Ghysels, E.1
Harvey, A.C.2
Renault, E.3
-
7
-
-
0001790102
-
Statistical aspects of ARCH and stochastic volatility
-
D. R. Cox, D. V. Hinkley, and O. E. Barndorff-Nielson, Eds., Chapman & Hall, London
-
N. Shepard, "Statistical aspects of ARCH and stochastic volatility," in Time series models in econometrics, finance and other fields, D. R. Cox, D. V. Hinkley, and O. E. Barndorff-Nielson, Eds., pp. 1-67. Chapman & Hall, London, 1996.
-
(1996)
Time Series Models in Econometrics, Finance and Other Fields
, pp. 1-67
-
-
Shepard, N.1
-
8
-
-
84952181953
-
Bayesian analysis of stochastic volatility models
-
E. Jacquier, N. G. Polson, and P. E. Rossi, "Bayesian analysis of stochastic volatility models," Journal of Business & Economic Statistics, vol. 12, no. 4, pp. 371-389, 1994.
-
(1994)
Journal of Business & Economic Statistics
, vol.12
, Issue.4
, pp. 371-389
-
-
Jacquier, E.1
Polson, N.G.2
Rossi, P.E.3
-
10
-
-
27844480834
-
Unsupervised variational Bayesian learning of nonlinear models
-
MIT Press, Cambridge, MA
-
A. Honkela and H. Valpola, "Unsupervised variational Bayesian learning of nonlinear models," in Advances in Neural Information Processing Systems 17, pp. 593-600. MIT Press, Cambridge, MA, 2005.
-
(2005)
Advances in Neural Information Processing Systems
, vol.17
, pp. 593-600
-
-
Honkela, A.1
Valpola, H.2
-
11
-
-
54049158947
-
Natural conjugate gradient in variational inference
-
Proc. 14th Int. Conf. on Neural Information Processing (ICONIP 2007), Kitakyushu, Japan, 2008, Springer-Verlag, Berlin
-
A. Honkela, M. Tornio, T. Raiko, and J. Karhunen, "Natural conjugate gradient in variational inference," in Proc. 14th Int. Conf. on Neural Information Processing (ICONIP 2007), Kitakyushu, Japan, 2008, vol. 4985 of Lecture Notes in Computer Science, pp. 305-314, Springer-Verlag, Berlin.
-
Lecture Notes in Computer Science
, vol.4985
, pp. 305-314
-
-
Honkela, A.1
Tornio, M.2
Raiko, T.3
Karhunen, J.4
-
12
-
-
34547474118
-
Blind separation of nonlinear mixtures by variational Bayesian learning
-
A. Honkela, H. Valpola, A. Ilin, and J. Karhunen, "Blind separation of nonlinear mixtures by variational Bayesian learning," Digital Signal Processing, vol. 17, no. 5, pp. 914-934, 2007.
-
(2007)
Digital Signal Processing
, vol.17
, Issue.5
, pp. 914-934
-
-
Honkela, A.1
Valpola, H.2
Ilin, A.3
Karhunen, J.4
-
13
-
-
0002266154
-
Ensemble learning
-
M. Girolami, Ed., Springer-Verlag, Berlin
-
H. Lappalainen and J. Miskin, "Ensemble learning," in Advances in Independent Component Analysis, M. Girolami, Ed., pp. 75-92. Springer-Verlag, Berlin, 2000.
-
(2000)
In Advances in Independent Component Analysis
, pp. 75-92
-
-
Lappalainen, H.1
Miskin, J.2
-
14
-
-
84864052254
-
Accelerated variational Dirichlet process mixtures
-
MIT Press, Cambridge, MA
-
K. Kurihara, M. Welling, and N. Vlassis, "Accelerated variational Dirichlet process mixtures," in Advances in Neural Information Processing Systems 19, pp. 761-768. MIT Press, Cambridge, MA, 2007.
-
(2007)
Advances in Neural Information Processing Systems
, vol.19
, pp. 761-768
-
-
Kurihara, K.1
Welling, M.2
Vlassis, N.3
-
15
-
-
84867040604
-
Gaussian process priors with uncertain inputs - Application to multiple-step ahead time series forecasting
-
Cambridge, MA, MIT Press
-
A. Girard, C. E. Rasmussen, J. Quiñonero-Candela, and R. Murray-Smith, "Gaussian process priors with uncertain inputs - application to multiple-step ahead time series forecasting," in Advances in Neural Information Processing Systems 15, Cambridge, MA, 2003, pp. 529-536, MIT Press.
-
(2003)
Advances in Neural Information Processing Systems
, vol.15
, pp. 529-536
-
-
Girard, A.1
Rasmussen, C.E.2
Quiñonero-Candela, J.3
Murray-Smith, R.4
-
17
-
-
78449312265
-
Variational Bayes for continuous-time nonlinear state-space models
-
A. Honkela, M. Tornio, and T. Raiko, "Variational Bayes for continuous-time nonlinear state-space models," in NIPS*2006 Workshop on Dynamical Systems, Stochastic Processes and Bayesian Inference, Whistler, B.C., 2006.
-
NIPS*2006 Workshop on Dynamical Systems, Stochastic Processes and Bayesian Inference, Whistler, B.C., 2006
-
-
Honkela, A.1
Tornio, M.2
Raiko, T.3
|