메뉴 건너뛰기




Volumn , Issue , 2010, Pages 190-195

Variational inference and learning for non-linear state-space models with state-dependent observation noise

Author keywords

[No Author keywords available]

Indexed keywords

AUTO-REGRESSIVE; GAUSSIAN PROCESSES; INHERENT NOISE; LATENT VARIABLE; LINEAR DEPENDENCE; LORENZ SYSTEM; NONLINEAR STATE; NONLINEAR STATE SPACE MODELS; OBSERVATION NOISE; PREDICTIVE PERFORMANCE; STATE-DEPENDENT; STATE-DEPENDENT NOISE; STOCK PRICE PREDICTION; VARIATIONAL INFERENCE;

EID: 78449305564     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/MLSP.2010.5588996     Document Type: Conference Paper
Times cited : (3)

References (17)
  • 2
    • 60649095294 scopus 로고    scopus 로고
    • Unified inference for variational Bayesian linear Gaussian state-space models
    • Cambridge, MA, The MIT Press
    • D. Barber and S. Chiappa, "Unified inference for variational Bayesian linear Gaussian state-space models," in Advances in Neural Information Processing Systems 20, Cambridge, MA, 2007, The MIT Press.
    • (2007) Advances in Neural Information Processing Systems , vol.20
    • Barber, D.1    Chiappa, S.2
  • 3
    • 0038132747 scopus 로고    scopus 로고
    • An unsupervised ensemble learning method for nonlinear dynamic state-space models
    • H. Valpola and J. Karhunen, "An unsupervised ensemble learning method for nonlinear dynamic state-space models," Neural Computation, vol. 14, no. 11, pp. 2647-2692, 2002.
    • (2002) Neural Computation , vol.14 , Issue.11 , pp. 2647-2692
    • Valpola, H.1    Karhunen, J.2
  • 5
    • 0346724352 scopus 로고    scopus 로고
    • Hierarchical models of variance sources
    • H. Valpola, M. Harva, and J. Karhunen, "Hierarchical models of variance sources," Signal Processing, vol. 84, no. 2, pp. 267-282, 2004.
    • (2004) Signal Processing , vol.84 , Issue.2 , pp. 267-282
    • Valpola, H.1    Harva, M.2    Karhunen, J.3
  • 6
    • 67649497847 scopus 로고    scopus 로고
    • Stochastic volatility
    • C. R. Rao and G. S. Maddala, Eds., North-Holland, Amsterdam
    • E. Ghysels, A. C. Harvey, and E. Renault, "Stochastic volatility," in Statistical Methods in Finance, C. R. Rao and G. S. Maddala, Eds., pp. 119-191. North-Holland, Amsterdam, 1996.
    • (1996) Statistical Methods in Finance , pp. 119-191
    • Ghysels, E.1    Harvey, A.C.2    Renault, E.3
  • 7
    • 0001790102 scopus 로고    scopus 로고
    • Statistical aspects of ARCH and stochastic volatility
    • D. R. Cox, D. V. Hinkley, and O. E. Barndorff-Nielson, Eds., Chapman & Hall, London
    • N. Shepard, "Statistical aspects of ARCH and stochastic volatility," in Time series models in econometrics, finance and other fields, D. R. Cox, D. V. Hinkley, and O. E. Barndorff-Nielson, Eds., pp. 1-67. Chapman & Hall, London, 1996.
    • (1996) Time Series Models in Econometrics, Finance and Other Fields , pp. 1-67
    • Shepard, N.1
  • 10
    • 27844480834 scopus 로고    scopus 로고
    • Unsupervised variational Bayesian learning of nonlinear models
    • MIT Press, Cambridge, MA
    • A. Honkela and H. Valpola, "Unsupervised variational Bayesian learning of nonlinear models," in Advances in Neural Information Processing Systems 17, pp. 593-600. MIT Press, Cambridge, MA, 2005.
    • (2005) Advances in Neural Information Processing Systems , vol.17 , pp. 593-600
    • Honkela, A.1    Valpola, H.2
  • 11
    • 54049158947 scopus 로고    scopus 로고
    • Natural conjugate gradient in variational inference
    • Proc. 14th Int. Conf. on Neural Information Processing (ICONIP 2007), Kitakyushu, Japan, 2008, Springer-Verlag, Berlin
    • A. Honkela, M. Tornio, T. Raiko, and J. Karhunen, "Natural conjugate gradient in variational inference," in Proc. 14th Int. Conf. on Neural Information Processing (ICONIP 2007), Kitakyushu, Japan, 2008, vol. 4985 of Lecture Notes in Computer Science, pp. 305-314, Springer-Verlag, Berlin.
    • Lecture Notes in Computer Science , vol.4985 , pp. 305-314
    • Honkela, A.1    Tornio, M.2    Raiko, T.3    Karhunen, J.4
  • 12
    • 34547474118 scopus 로고    scopus 로고
    • Blind separation of nonlinear mixtures by variational Bayesian learning
    • A. Honkela, H. Valpola, A. Ilin, and J. Karhunen, "Blind separation of nonlinear mixtures by variational Bayesian learning," Digital Signal Processing, vol. 17, no. 5, pp. 914-934, 2007.
    • (2007) Digital Signal Processing , vol.17 , Issue.5 , pp. 914-934
    • Honkela, A.1    Valpola, H.2    Ilin, A.3    Karhunen, J.4
  • 15
    • 84867040604 scopus 로고    scopus 로고
    • Gaussian process priors with uncertain inputs - Application to multiple-step ahead time series forecasting
    • Cambridge, MA, MIT Press
    • A. Girard, C. E. Rasmussen, J. Quiñonero-Candela, and R. Murray-Smith, "Gaussian process priors with uncertain inputs - application to multiple-step ahead time series forecasting," in Advances in Neural Information Processing Systems 15, Cambridge, MA, 2003, pp. 529-536, MIT Press.
    • (2003) Advances in Neural Information Processing Systems , vol.15 , pp. 529-536
    • Girard, A.1    Rasmussen, C.E.2    Quiñonero-Candela, J.3    Murray-Smith, R.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.