메뉴 건너뛰기




Volumn 181, Issue 3, 2011, Pages 398-418

Discovering multi-label temporal patterns in sequence databases

Author keywords

Interval based event sequence; Point based event sequence; Sequential patterns; Temporal patterns

Indexed keywords

DATA MINING TECHNIQUES; EVENT SEQUENCE; MINING SEQUENTIAL PATTERNS; MULTI-LABEL; POINT-BASED; REAL-LIFE APPLICATIONS; SEQUENCE DATABASE; SEQUENTIAL PATTERNS; SEQUENTIAL-PATTERN MINING; TEMPORAL DATABASE; TEMPORAL PATTERN;

EID: 78449287890     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ins.2010.09.024     Document Type: Article
Times cited : (20)

References (43)
  • 1
    • 78449306529 scopus 로고    scopus 로고
    • Ajax (programming), Wikipedia
    • Ajax (programming), Wikipedia. .
  • 5
    • 0020849266 scopus 로고
    • Maintaining knowledge about temporal intervals
    • J. Allen Maintaining knowledge about temporal intervals Communications of ACM 26 11 1983 832 843
    • (1983) Communications of ACM , vol.26 , Issue.11 , pp. 832-843
    • Allen, J.1
  • 7
    • 38349081558 scopus 로고    scopus 로고
    • Efficient strategies for tough aggregate constraint-based sequential pattern mining
    • E.H. Chen, H.H. Cao, Q. Li, and T.Y. Qian Efficient strategies for tough aggregate constraint-based sequential pattern mining Information Sciences 178 6 2008 1498 1518
    • (2008) Information Sciences , vol.178 , Issue.6 , pp. 1498-1518
    • Chen, E.H.1    Cao, H.H.2    Li, Q.3    Qian, T.Y.4
  • 8
    • 0141921659 scopus 로고    scopus 로고
    • Discovering time-interval sequential patterns in sequence databases
    • Y.L. Chen, M.C. Chiang, and M.T. Kao Discovering time-interval sequential patterns in sequence databases Expert Systems with Application 25 3 2003 343 354
    • (2003) Expert Systems with Application , vol.25 , Issue.3 , pp. 343-354
    • Chen, Y.L.1    Chiang, M.C.2    Kao, M.T.3
  • 14
    • 37249073911 scopus 로고    scopus 로고
    • From crispness to fuzziness: Three algorithms for soft sequential pattern mining
    • C. Fiot, A. Laurent, and M. Teisseire From crispness to fuzziness: three algorithms for soft sequential pattern mining IEEE Transactions on Fuzzy Systems 15 6 2007 1263 1277
    • (2007) IEEE Transactions on Fuzzy Systems , vol.15 , Issue.6 , pp. 1263-1277
    • Fiot, C.1    Laurent, A.2    Teisseire, M.3
  • 20
    • 50949119270 scopus 로고    scopus 로고
    • Mining typical patterns from databases
    • H.L. Hu, and Y.L. Chen Mining typical patterns from databases Information Sciences 178 19 2008 3683 3696
    • (2008) Information Sciences , vol.178 , Issue.19 , pp. 3683-3696
    • Hu, H.L.1    Chen, Y.L.2
  • 21
    • 77953727642 scopus 로고    scopus 로고
    • Knowledge gathering of fuzzy multi-time-interval sequential patterns
    • T.C.K. Huang Knowledge gathering of fuzzy multi-time-interval sequential patterns Information Sciences 180 17 2010 3316 3334
    • (2010) Information Sciences , vol.180 , Issue.17 , pp. 3316-3334
    • Huang, T.C.K.1
  • 22
    • 84947563969 scopus 로고    scopus 로고
    • Discovering temporal patterns for interval-based events
    • P.S. Kam, and A.W.C. Fu Discovering temporal patterns for interval-based events Lecture Notes in Computer Science 1874 2000 317 326
    • (2000) Lecture Notes in Computer Science , vol.1874 , pp. 317-326
    • Kam, P.S.1    Fu, A.W.C.2
  • 23
    • 73149104367 scopus 로고    scopus 로고
    • An approach to discovering multi-temporal patterns and its application to financial databases
    • X.X. Kong, Q. Wei, and G.Q. Chen An approach to discovering multi-temporal patterns and its application to financial databases Information Sciences 180 6 2010 873 885
    • (2010) Information Sciences , vol.180 , Issue.6 , pp. 873-885
    • Kong, X.X.1    Wei, Q.2    Chen, G.Q.3
  • 24
    • 64549108460 scopus 로고    scopus 로고
    • Mining frequent trajectory patterns in spatial-temporal databases
    • A.J.T. Lee, Y.A. Chen, and W.C. Ip Mining frequent trajectory patterns in spatial-temporal databases Information Sciences 179 13 2009 2218 2231
    • (2009) Information Sciences , vol.179 , Issue.13 , pp. 2218-2231
    • Lee, A.J.T.1    Chen, Y.A.2    Ip, W.C.3
  • 27
    • 51349163865 scopus 로고    scopus 로고
    • Fast discovery of sequential patterns in large databases using effective time-indexing
    • M.Y. Lin, S.C. Hsueh, and C.W. Chang Fast discovery of sequential patterns in large databases using effective time-indexing Information Sciences 178 22 2008 4228 4245
    • (2008) Information Sciences , vol.178 , Issue.22 , pp. 4228-4245
    • Lin, M.Y.1    Hsueh, S.C.2    Chang, C.W.3
  • 29
    • 37849185018 scopus 로고    scopus 로고
    • Mining sequential patterns from data streams: A centroid approach
    • A. Marascu, and F. Masseglia Mining sequential patterns from data streams: a centroid approach Journal of Intelligent Information Systems 27 3 2006 291 307
    • (2006) Journal of Intelligent Information Systems , vol.27 , Issue.3 , pp. 291-307
    • Marascu, A.1    Masseglia, F.2
  • 30
    • 0346561036 scopus 로고    scopus 로고
    • Constrained frequent pattern mining: A pattern-growth view
    • J. Pei, and J. Han Constrained frequent pattern mining: a pattern-growth view ACM SIGKDD Explorations Newsletter 4 1 2002 31 39
    • (2002) ACM SIGKDD Explorations Newsletter , vol.4 , Issue.1 , pp. 31-39
    • Pei, J.1    Han, J.2
  • 38
    • 71749112568 scopus 로고    scopus 로고
    • Discovering hybrid temporal patterns from sequences consisting of point- and interval-based events
    • S.Y. Wu, and Y.L. Chen Discovering hybrid temporal patterns from sequences consisting of point- and interval-based events Data and Knowledge Engineering 68 11 2009 1309 1330
    • (2009) Data and Knowledge Engineering , vol.68 , Issue.11 , pp. 1309-1330
    • Wu, S.Y.1    Chen, Y.L.2
  • 43
    • 0034826102 scopus 로고    scopus 로고
    • SPADE: An efficient algorithm for mining frequent sequences
    • M. Zaki SPADE: an efficient algorithm for mining frequent sequences Machine Learning 42 1/2 2001 31 60
    • (2001) Machine Learning , vol.42 , Issue.1-2 , pp. 31-60
    • Zaki, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.