-
1
-
-
77953636772
-
Energy dissipation and transport in nanoscale devices
-
Pop, E. Energy dissipation and transport in nanoscale devices Nano Res. 2010, 3, 147-169
-
(2010)
Nano Res.
, vol.3
, pp. 147-169
-
-
Pop, E.1
-
2
-
-
33947269110
-
Cooling a Microprocessor Chip
-
Mahajan, R. Cooling a Microprocessor Chip Proc. IEEE 2006, 94, 1476-1486
-
(2006)
Proc. IEEE
, vol.94
, pp. 1476-1486
-
-
Mahajan, R.1
-
3
-
-
40749140712
-
Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer
-
Morozov, S. V. Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer Phys. Rev. Lett. 2008, 100, 016602-016604
-
(2008)
Phys. Rev. Lett.
, vol.100
, pp. 016602-016604
-
-
Morozov, S.V.1
-
4
-
-
65549156874
-
Phonon thermal conduction in graphene: Role of Umklapp and edge roughness scattering
-
Nika, D. L.; Pokatilov, E. P.; Askerov, A. S.; Balandin, A. A. Phonon thermal conduction in graphene: Role of Umklapp and edge roughness scattering Phys. Rev. B 2009, 79, 155413-155412
-
(2009)
Phys. Rev. B
, vol.79
, pp. 155413-155412
-
-
Nika, D.L.1
Pokatilov, E.P.2
Askerov, A.S.3
Balandin, A.A.4
-
5
-
-
43449125024
-
Carbon wonderland
-
Geim, A. K.; Kim, P. Carbon wonderland Sci. Am. 2008, 298, 90-97
-
(2008)
Sci. Am.
, vol.298
, pp. 90-97
-
-
Geim, A.K.1
Kim, P.2
-
6
-
-
67649225738
-
Graphene: Status and Prospects
-
Geim, A. K. Graphene: Status and Prospects Science 2009, 324, 1530-1534
-
(2009)
Science
, vol.324
, pp. 1530-1534
-
-
Geim, A.K.1
-
7
-
-
57349090160
-
Current saturation in zero-bandgap, top-gated graphene field-effect transistors
-
Meric, I. Current saturation in zero-bandgap, top-gated graphene field-effect transistors Nature Nano 2008, 3, 654-659
-
(2008)
Nature Nano
, vol.3
, pp. 654-659
-
-
Meric, I.1
-
8
-
-
0003225199
-
Heat generation in semiconductor devices
-
Lindefelt, U. Heat generation in semiconductor devices J. Appl. Phys. 1994, 75, 942-957
-
(1994)
J. Appl. Phys.
, vol.75
, pp. 942-957
-
-
Lindefelt, U.1
-
9
-
-
66449099026
-
Energy Dissipation in Graphene Field-Effect Transistors
-
Freitag, M. Energy Dissipation in Graphene Field-Effect Transistors Nano Lett. 2009, 9, 1883-1888
-
(2009)
Nano Lett.
, vol.9
, pp. 1883-1888
-
-
Freitag, M.1
-
10
-
-
76749134375
-
Hot Phonons in an Electrically Biased Graphene Constriction
-
Chae, D.-H.; Krauss, B.; von Klitzing, K.; Smet, J. H. Hot Phonons in an Electrically Biased Graphene Constriction Nano Lett. 2010, 10, 466-471
-
(2010)
Nano Lett.
, vol.10
, pp. 466-471
-
-
Chae, D.-H.1
Krauss, B.2
Von Klitzing, K.3
Smet, J.H.4
-
11
-
-
77950994920
-
Infrared microscopy of Joule heating in graphene field effect transistors
-
Genoa, Italy, July 26-30, 2009; pp. 818-821
-
Bae, M.-H.; Ong, Z.-Y.; Estrada, D.; Pop, E. Infrared microscopy of Joule heating in graphene field effect transistors, 9th IEEE Conference Nanotechnology, IEEE-NANO, Genoa, Italy, July 26-30, 2009; pp. 818-821.
-
9th IEEE Conference Nanotechnology, IEEE-NANO
-
-
Bae, M.-H.1
Ong, Z.-Y.2
Estrada, D.3
Pop, E.4
-
12
-
-
7444220645
-
Electric Field Effect in Atomically Thin Carbon Films
-
Novoselov, K. S. Electric Field Effect in Atomically Thin Carbon Films Science 2004, 306, 666-669
-
(2004)
Science
, vol.306
, pp. 666-669
-
-
Novoselov, K.S.1
-
13
-
-
34548446361
-
Carrier statistics and quantum capacitance of graphene sheets and ribbons
-
Fang, T.; Konar, A.; Xing, H.; Jena, D. Carrier statistics and quantum capacitance of graphene sheets and ribbons Appl. Phys. Lett. 2007, 91, 092109-092103
-
(2007)
Appl. Phys. Lett.
, vol.91
, pp. 092109-092103
-
-
Fang, T.1
Konar, A.2
Xing, H.3
Jena, D.4
-
14
-
-
38849201768
-
Observation of electron-hole puddles in graphene using a scanning single-electron transistor
-
Martin, J. Observation of electron-hole puddles in graphene using a scanning single-electron transistor Nat. Phys. 2008, 4, 144-148
-
(2008)
Nat. Phys.
, vol.4
, pp. 144-148
-
-
Martin, J.1
-
15
-
-
60349109113
-
3 dielectric
-
3 dielectric Appl. Phys. Lett. 2009, 94, 062107-062103
-
(2009)
Appl. Phys. Lett.
, vol.94
, pp. 062107-062103
-
-
Kim, S.1
-
16
-
-
78650163148
-
-
Graphene hot spot movie available as supporting information on the ACS web page, and at the authors' web site
-
Graphene hot spot movie available as supporting information on the ACS web page, and at the authors' web site http://poplab.ece.illinois.edu/ multimedia.html.
-
-
-
-
17
-
-
78650122419
-
-
2 layer is transparent to IR. Hence, the detected IR radiation is a combination of thermal signals from the graphene and from the Si substrate heated by the graphene. By numerical calculations, we find the real graphene temperature rise (Δ T) is proportional to that measured by the IR microscope and is approximately three times higher (see Supporting Information)
-
2 layer is transparent to IR. Hence, the detected IR radiation is a combination of thermal signals from the graphene and from the Si substrate heated by the graphene. By numerical calculations, we find the real graphene temperature rise (Δ T) is proportional to that measured by the IR microscope and is approximately three times higher (see Supporting Information).
-
-
-
-
18
-
-
49949134400
-
Effects of diffusion current on characteristics of metal-oxide (insulator) semiconductor transistors
-
Pao, H. C.; Sah, C. T. Effects of diffusion current on characteristics of metal-oxide (insulator) semiconductor transistors Solid-State Electron. 1966, 9, 927-937
-
(1966)
Solid-State Electron.
, vol.9
, pp. 927-937
-
-
Pao, H.C.1
Sah, C.T.2
-
19
-
-
43049170468
-
Ultrahigh electron mobility in suspended graphene
-
Bolotin, K. I. Ultrahigh electron mobility in suspended graphene Solid State Commun. 2008, 146, 351-355
-
(2008)
Solid State Commun.
, vol.146
, pp. 351-355
-
-
Bolotin, K.I.1
-
20
-
-
42349113188
-
Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits
-
Ghosh, S. Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits Appl. Phys. Lett. 2008, 92, 151911-151913
-
(2008)
Appl. Phys. Lett.
, vol.92
, pp. 151911-151913
-
-
Ghosh, S.1
-
21
-
-
78650109971
-
-
note
-
Temperature effects on mobility and velocity saturation are neglected here; mobility was found to be relatively independent of temperature in this range, presumably being limited by impurity scattering.
-
-
-
-
23
-
-
0001136968
-
STB Model and Transport Properties of Pyrolytic Graphites
-
Klein, C. A. STB Model and Transport Properties of Pyrolytic Graphites J. Appl. Phys. 1964, 35, 2947-2957
-
(1964)
J. Appl. Phys.
, vol.35
, pp. 2947-2957
-
-
Klein, C.A.1
-
25
-
-
77950791436
-
Two-Dimensional Phonon Transport in Supported Graphene
-
Seol, J. H. Two-Dimensional Phonon Transport in Supported Graphene Science 2010, 328, 213-216
-
(2010)
Science
, vol.328
, pp. 213-216
-
-
Seol, J.H.1
-
26
-
-
34248575328
-
Electrical and thermal transport in metallic single-wall carbon nanotubes on insulating substrates
-
Pop, E.; Mann, D. A.; Goodson, K. E.; Dai, H. Electrical and thermal transport in metallic single-wall carbon nanotubes on insulating substrates J. Appl. Phys. 2007, 101 093710-093710
-
(2007)
J. Appl. Phys.
, vol.101
, pp. 093710-093710
-
-
Pop, E.1
Mann, D.A.2
Goodson, K.E.3
Dai, H.4
-
27
-
-
47249117849
-
The role of electrical and thermal contact resistance for Joule breakdown of single-wall carbon nanotubes
-
Pop, E. The role of electrical and thermal contact resistance for Joule breakdown of single-wall carbon nanotubes Nanotechnology 2008, 19, 295202
-
(2008)
Nanotechnology
, vol.19
, pp. 295202
-
-
Pop, E.1
-
29
-
-
78650087868
-
-
-2), respectively, and this stability is provided by our PMMA passivation (see Supporting Information, Fig. S8)
-
-2), respectively, and this stability is provided by our PMMA passivation (see Supporting Information, Fig. S8).
-
-
-
-
30
-
-
49449096174
-
Contact and edge effects in graphene devices
-
Lee, E. J. H.; Balasubramanian, K.; Weitz, R. T.; Burghard, M.; Kern, K. Contact and edge effects in graphene devices Nat. Nanotechnol. 2008, 3, 486-490
-
(2008)
Nat. Nanotechnol.
, vol.3
, pp. 486-490
-
-
Lee, E.J.H.1
Balasubramanian, K.2
Weitz, R.T.3
Burghard, M.4
Kern, K.5
-
31
-
-
68949114592
-
Role of contacts in graphene transistors: A scanning photocurrent study
-
Mueller, T.; Xia, F.; Freitag, M.; Tsang, J.; Avouris, P. Role of contacts in graphene transistors: A scanning photocurrent study Phys. Rev. B 2009, 79, 245430-245436
-
(2009)
Phys. Rev. B
, vol.79
, pp. 245430-245436
-
-
Mueller, T.1
Xia, F.2
Freitag, M.3
Tsang, J.4
Avouris, P.5
-
32
-
-
77949696781
-
Scanning gate microscopy of current-annealed single layer graphene
-
Connolly, M. R. Scanning gate microscopy of current-annealed single layer graphene Appl. Phys. Lett. 2010, 96, 113501-113503
-
(2010)
Appl. Phys. Lett.
, vol.96
, pp. 113501-113503
-
-
Connolly, M.R.1
-
33
-
-
44849104928
-
Carbon-nanotube photonics and optoelectronics
-
Avouris, P.; Freitag, M.; Perebeinos, V. Carbon-nanotube photonics and optoelectronics Nat. Photonics 2008, 2, 341-350
-
(2008)
Nat. Photonics
, vol.2
, pp. 341-350
-
-
Avouris, P.1
Freitag, M.2
Perebeinos, V.3
-
34
-
-
36249007086
-
Biased Bilayer Graphene: Semiconductor with a Gap Tunable by the Electric Field Effect
-
Castro, E. V. Biased Bilayer Graphene: Semiconductor with a Gap Tunable by the Electric Field Effect Phys. Rev. Lett. 2007, 99, 216802-216804
-
(2007)
Phys. Rev. Lett.
, vol.99
, pp. 216802-216804
-
-
Castro, E.V.1
-
35
-
-
41549145225
-
Boltzmann transport and residual conductivity in bilayer graphene
-
Adam, S.; Das Sarma, S. Boltzmann transport and residual conductivity in bilayer graphene Phys. Rev. B 2008, 77, 115436-115436
-
(2008)
Phys. Rev. B
, vol.77
, pp. 115436-115436
-
-
Adam, S.1
Das Sarma, S.2
-
36
-
-
78650080957
-
-
OP in the range 60-180 meV
-
OP in the range 60-180 meV.
-
-
-
-
37
-
-
0030379801
-
Self-heating effects in SOI MOSFETs and their measurement by small signal conductance techniques
-
Tenbroek, B.; Lee, M. S. L.; Redman-White, W.; Bunyan, R. J. T.; Uren, M. J. Self-heating effects in SOI MOSFETs and their measurement by small signal conductance techniques IEEE Trans. Electron Devices 1996, 43, 2240-2248
-
(1996)
IEEE Trans. Electron Devices
, vol.43
, pp. 2240-2248
-
-
Tenbroek, B.1
Lee, M.S.L.2
Redman-White, W.3
Bunyan, R.J.T.4
Uren, M.J.5
-
38
-
-
84944378006
-
Measurement and modeling of self-heating in SOI NMOSFETs
-
Su, L. T.; Chung, J. E.; A, A. D.; Goodson, K. E.; Flik, M. I. Measurement and modeling of self-heating in SOI NMOSFETs IEEE Trans. Electron Devices 1994, 41, 69-75
-
(1994)
IEEE Trans. Electron Devices
, vol.41
, pp. 69-75
-
-
Su, L.T.1
Chung, J.E.2
D, A.A.3
Goodson, K.E.4
Flik, M.I.5
-
39
-
-
0029291056
-
Measurement of I-V curve of silicon-on-insulator (SOI) MOSFETs without self-heating
-
Jenkins, K. A.; Sun, J.Y.-C. Measurement of I-V curve of silicon-on-insulator (SOI) MOSFETs without self-heating IEEE Electron Device Lett. 1995, 16, 145
-
(1995)
IEEE Electron Device Lett.
, vol.16
, pp. 145
-
-
Jenkins, K.A.1
Sun, J.Y.-C.2
-
40
-
-
77955229164
-
-
(online) doi:10.1038/nnano.2010.90
-
Freitag, M.; Chiu, H.-Y.; Steiner, M.; Perebeinos, V.; Avouris, P. Nat. Nanotechnol. 2010, (online) doi:10.1038/nnano.2010.90.
-
(2010)
Nat. Nanotechnol.
-
-
Freitag, M.1
Chiu, H.-Y.2
Steiner, M.3
Perebeinos, V.4
Avouris, P.5
|