메뉴 건너뛰기




Volumn 50, Issue 2, 2010, Pages 363-372

Lattice constant prediction of cubic and monoclinic perovskites using neural networks and support vector regression

Author keywords

Artificial Neural Network; Density Functional Theory; Lattice Constant Prediction; Multiple Linear Regression; Perovskites; Support Vector Regression

Indexed keywords

ARTIFICIAL NEURAL NETWORK; COMPUTER PROGRAM; CONVENTIONAL APPROACH; DATA SETS; GENERALIZED REGRESSION NEURAL NETWORKS; IONIC RADIUS; MULTIPLE LINEAR REGRESSIONS; PERFORMANCE ANALYSIS; PHYSIO-CHEMICAL PROPERTIES; SUPPORT VECTOR REGRESSION; SUPPORT VECTOR REGRESSIONS;

EID: 78449258204     PISSN: 09270256     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.commatsci.2010.08.028     Document Type: Article
Times cited : (97)

References (57)
  • 22
    • 78449246625 scopus 로고    scopus 로고
    • Technical University of Denmark
    • F.C. Vallejo, in: SERC Short Report, Technical University of Denmark, 2008.
    • (2008) SERC Short Report
    • Vallejo, F.C.1
  • 52
    • 0003994186 scopus 로고    scopus 로고
    • Matlab7.0
    • Matlab7.0, in, MathWorks, 2006, .
    • (2006) MathWorks


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.