메뉴 건너뛰기




Volumn 9, Issue 4, 2010, Pages 339-351

On label information incorporated metric learning for regressions

Author keywords

application; label information; Metric learning; regression

Indexed keywords

DISTANCE METRIC LEARNING; DISTANCE METRICS; GAUSSIAN PROCESS REGRESSION; HEAD POSE; LABEL INFORMATION; LINEAR TRANSFORMATION; MANIFOLD LEARNING ALGORITHM; METRIC LEARNING; OPTIMIZATION METHOD; OPTIMIZATION PROBLEMS; REGRESSION; REGRESSION MODEL; REGRESSION PROBLEM; TEST SAMPLES;

EID: 78349262271     PISSN: 14690268     EISSN: None     Source Type: Journal    
DOI: 10.1142/S1469026810002938     Document Type: Article
Times cited : (2)

References (33)
  • 1
    • 35148892730 scopus 로고    scopus 로고
    • Biased manifold embedding: A framework for person-independent head pose estimation in
    • V. N. Balasubramanian, J. Ye and S. Panchanathan, Biased manifold embedding: A framework for person-independent head pose estimation, in IEEE Conf. CVPR (2007), pp. 1-7.
    • (2007) IEEE Conf. CVPR , pp. 1-7
    • Balasubramanian, V.N.1    Ye, J.2    Panchanathan, S.3
  • 2
    • 78650291959 scopus 로고    scopus 로고
    • Learning distance function by coding similarity
    • A. Bar-Hillel and D. Weinshall, Learning distance function by coding similarity, in Proc. ICML (2007), pp. 65-72.
    • (2007) Proc. ICML , pp. 65-72
    • Bar-Hillel, A.1    Weinshall, D.2
  • 3
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
    • M. Belkin, P. Niyogi and V. Sindhwani, Manifold regularization: A geometric framework for learning from labeled and unlabeled examples, J. Mach. Learn. Res. 7 (2006) 2399-2434.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 4
    • 33750378734 scopus 로고    scopus 로고
    • Orthogonal Laplacianfaces for face recognition
    • D. Cai, X. He, J. Han and H. J. Zhang, Orthogonal Laplacianfaces for face recognition, IEEE Trans. Image Process. 15 (2006) 3608-3614.
    • (2006) IEEE Trans. Image Process , vol.15 , pp. 3608-3614
    • Cai, D.1    He, X.2    Han, J.3    Zhang, H.J.4
  • 8
    • 70349373021 scopus 로고    scopus 로고
    • When does geodesic distance recover the true hidden parametrization of families of images?
    • D. L. Donoho and C. E. Grimes, When does geodesic distance recover the true hidden parametrization of families of images? in Proc. European Symposium on Artificial Neural Networks (2002), pp. 199-204.
    • (2002) Proc. European Symposium on Artificial Neural Networks , pp. 199-204
    • Donoho, D.L.1    Grimes, C.E.2
  • 11
    • 70350666501 scopus 로고    scopus 로고
    • Facial age estimation by nonlinear aging pattern subspace
    • X. Geng, K. Smith-Miles and Z.-Z. Zhou, Facial age estimation by nonlinear aging pattern subspace, in Proc. ACM Conf. Multimedia (2008), pp. 721-724.
    • (2008) Proc. ACM Conf. Multimedia , pp. 721-724
    • Geng, X.1    Smith-Miles, K.2    Zhou, Z.-Z.3
  • 12
    • 34547196758 scopus 로고    scopus 로고
    • Learning from facial aging patterns for automatic age estimation
    • X. Geng, Z. H. Zhou, Y. Zhang, G. Li and H. Dai, Learning from facial aging patterns for automatic age estimation, in Proc. ACM Conf. Multimedia (2006), pp. 307-316.
    • (2006) Proc. ACM Conf. Multimedia , pp. 307-316
    • Geng, X.1    Zhou, Z.H.2    Zhang, Y.3    Li, G.4    Dai, H.5
  • 15
    • 45949109037 scopus 로고    scopus 로고
    • Image-based human age estimation by manifold learning and locally adjusted robust regression
    • G. Guo, Y. Fu, C. Dyer and T. S. Huang, Image-based human age estimation by manifold learning and locally adjusted robust regression, IEEE Trans. Image Process. 17 (2008) 1178-1188.
    • (2008) IEEE Trans. Image Process , vol.17 , pp. 1178-1188
    • Guo, G.1    Fu, Y.2    Dyer, C.3    Huang, T.S.4
  • 17
    • 0004220749 scopus 로고    scopus 로고
    • Monte Carlo Implementation of Gaussian process models for Bayesian regression and classification
    • R. M. Neal, Monte Carlo Implementation of Gaussian process models for Bayesian regression and classification, Technical Report CRG-TR-97-2.
    • Technical Report CRG-TR-97-2
    • Neal, R.M.1
  • 18
    • 70349375765 scopus 로고    scopus 로고
    • Regression on manifolds using kernel dimension reduction
    • J. Nilsson, F. Sha and M. I. Jordan, Regression on manifolds using kernel dimension reduction, in IEEE Conf. ICML (2007), pp. 265-272.
    • (2007) IEEE Conf. ICML , pp. 265-272
    • Nilsson, J.1    Sha, F.2    Jordan, M.I.3
  • 20
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • S. T. Roweis and L. K. Saul, Nonlinear dimensionality reduction by locally linear embedding, Science 290(5500) (2000) 2323-2326.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 21
    • 78049364026 scopus 로고    scopus 로고
    • Learning with Kernels: Support Vector Machines, Reg-ularization
    • MIT Press, Cambridge, MA
    • B. Scholkopf and A. J. Smola, Learning with Kernels: Support Vector Machines, Reg-ularization, Optimization, and Beyond (MIT Press, Cambridge, MA, 2002).
    • (2002) Optimization, and beyond
    • Scholkopf, B.1    Smola, A.J.2
  • 22
    • 52949143093 scopus 로고    scopus 로고
    • Geodesic Gaussian kernels for value function approximation
    • M. Sugiyama, H. Hachiya, C. Towell and S. Vijayakumar, Geodesic Gaussian kernels for value function approximation, Auton. Robots 25 (2008) 287-304.
    • (2008) Auton. Robots , vol.25 , pp. 287-304
    • Sugiyama, M.1    Hachiya, H.2    Towell, C.3    Vijayakumar, S.4
  • 23
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionally reduction
    • J. B. Tenebaum, V. de. Silva and J. C. Langford, A global geometric framework for nonlinear dimensionally reduction, Science 290(5500) (2000) 2319-2323.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2319-2323
    • Tenebaum, J.B.1    De. Silva, V.2    Langford, J.C.3
  • 24
    • 33749550361 scopus 로고    scopus 로고
    • Distance metric learning for large margin nearest neighbor classification
    • K. Weinberger, J. Blitzer and L. Saul, Distance metric learning for large margin nearest neighbor classification, in Proc. NIPS (2006), pp. 1475-1482.
    • (2006) Proc. NIPS , pp. 1475-1482
    • Weinberger, K.1    Blitzer, J.2    Saul, L.3
  • 27
    • 50649098885 scopus 로고    scopus 로고
    • Learning auto-structured regressor from uncertain nonnegative labels
    • S. Yan, H. Wang, X. Tang and T. S. Huang, Learning auto-structured regressor from uncertain nonnegative labels, in IEEE Conf. ICCV (2007), pp. 1-8.
    • (2007) IEEE Conf. ICCV , pp. 1-8
    • Yan, S.1    Wang, H.2    Tang, X.3    Huang, T.S.4
  • 33
    • 0004255908 scopus 로고    scopus 로고
    • McGraw-Hill Inc., Burr Ridge Parkway, Illinois
    • T. Mitchell, Machine Learning (McGraw-Hill Inc., Burr Ridge Parkway, Illinois, 1997).
    • (1997) Machine Learning
    • Mitchell, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.