메뉴 건너뛰기




Volumn 35, Issue 10, 2010, Pages 1212-1216

Estimating urban impervious surface percentage with multi-source remote sensing data

Author keywords

Classification and regression tree (CART); Impervious surface; Multi source remote sensing data; Prediction model

Indexed keywords

CLASSIFICATION AND REGRESSION TREE; IMPERVIOUS SURFACE; LOWER AND UPPER BOUNDS; MULTI-SPECTRAL IMAGERY; MULTISOURCES; NEAR-INFRARED BANDS; OVER-ESTIMATION; PREDICTION MODEL; RADIOMETRIC QUALITY; REMOTE SENSING DATA; SPATIAL RESOLUTION; URBAN AREAS;

EID: 78149489343     PISSN: 16718860     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (4)

References (12)
  • 1
    • 0030459584 scopus 로고    scopus 로고
    • Impervious surface coverage: the emergence of a key urban environmental indicator
    • Arnold C, Gibbons C. Impervious surface coverage: the emergence of a key urban environmental indicator[J]. Journal of the American Planning Association, 1996, 62(2): 243-258
    • (1996) Journal of the American Planning Association , vol.62 , Issue.2 , pp. 243-258
    • Arnold, C.1    Gibbons, C.2
  • 2
    • 0036253365 scopus 로고    scopus 로고
    • Impervious surfaces and water quality: a review of current literature and its implications for watershed planning
    • Brabec E, Schulte S, Richards P. Impervious surfaces and water quality: a review of current literature and its implications for watershed planning[J]. Journal of Planning Literature, 2002, 16(4): 499-514
    • (2002) Journal of Planning Literature , vol.16 , Issue.4 , pp. 499-514
    • Brabec, E.1    Schulte, S.2    Richards, P.3
  • 3
    • 0037381086 scopus 로고    scopus 로고
    • Estimating Impervious surface distribution by spectral mixture analysis
    • Wu C, Murray A. Estimating Impervious surface distribution by spectral mixture analysis[J]. Remote Sensing of Environment, 2003, 84(4): 493-505
    • (2003) Remote Sensing of Environment , vol.84 , Issue.4 , pp. 493-505
    • Wu, C.1    Murray, A.2
  • 4
    • 31144447929 scopus 로고    scopus 로고
    • Estimating landscape imperviousness index from satellite imagery
    • Yang X. Estimating landscape imperviousness index from satellite imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2006, 3(1): 6-9
    • (2006) IEEE Geoscience and Remote Sensing Letters , vol.3 , Issue.1 , pp. 6-9
    • Yang, X.1
  • 6
    • 33646478860 scopus 로고    scopus 로고
    • Use of impervious surface in urban land-use classification
    • Lu D, Weng Q. Use of impervious surface in urban land-use classification[J]. Remote Sensing of Environment, 2006, 102(2): 146-160
    • (2006) Remote Sensing of Environment , vol.102 , Issue.2 , pp. 146-160
    • Lu, D.1    Weng, Q.2
  • 7
    • 78149490936 scopus 로고    scopus 로고
    • Chinese source
    • 2003
    • (2003)
  • 8
    • 78149474053 scopus 로고    scopus 로고
    • Chinese source
    • 2001, 26(5): 430-434
    • (2001) , vol.26 , Issue.5 , pp. 430-434
  • 9
    • 33744771976 scopus 로고    scopus 로고
    • + using self-organizing map (SOM) neural networks for urban land cover characterization
    • + using self-organizing map (SOM) neural networks for urban land cover characterization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(6): 1642-1654
    • (2006) IEEE Transactions on Geoscience and Remote Sensing , vol.44 , Issue.6 , pp. 1642-1654
    • Lee, S.1    Lathrop, R.2
  • 10
    • 78149472312 scopus 로고    scopus 로고
    • Chinese source
    • 2007, 32(12): 1099-1106
    • (2007) , vol.32 , Issue.12 , pp. 1099-1106
  • 12
    • 1842431416 scopus 로고    scopus 로고
    • Classification of remotely sensed imagery using stochastic gradient boosting as a refinement of classification tree analysis
    • Lawrence R, Bunn A, Powell S. Classification of remotely sensed imagery using stochastic gradient boosting as a refinement of classification tree analysis[J]. Remote Sensing of Environment, 2004, 90(3): 331-336
    • (2004) Remote Sensing of Environment , vol.90 , Issue.3 , pp. 331-336
    • Lawrence, R.1    Bunn, A.2    Powell, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.