메뉴 건너뛰기




Volumn , Issue , 2010, Pages 2065-2068

The fusion of deep learning architectures and particle filtering applied to lip tracking

Author keywords

[No Author keywords available]

Indexed keywords

ART MODEL; BELIEF NETWORKS; DEEP LEARNING; EXPECTED VALUES; IMAGING CONDITIONS; LIP CONTOUR; LIP TRACKING; NON-RIGID OBJECT TRACKING; OBSERVATION MODEL; PARAMETER SPACES; PARTICLE FILTERING; PROPOSAL DISTRIBUTION; SEQUENTIAL MONTE CARLO SAMPLING; TRANSITION MODEL; VIDEO SEQUENCES;

EID: 78149488309     PISSN: 10514651     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICPR.2010.508     Document Type: Conference Paper
Times cited : (8)

References (13)
  • 4
    • 0034224204 scopus 로고    scopus 로고
    • Optical flow constraints on deformable models with applications to face tracking
    • D. DeCarlo and D.Metaxas. Optical flow constraints on deformable models with applications to face tracking. Int. J. Comp. Vis., 38(2):99-127, 2000.
    • (2000) Int. J. Comp. Vis. , vol.38 , Issue.2 , pp. 99-127
    • DeCarlo, D.1    Metaxas, D.2
  • 6
    • 40749153509 scopus 로고    scopus 로고
    • Robust shape tracking with multiple models in ultrasound images
    • J. C. Nascimento and J. S.Marques. Robust shape tracking with multiple models in ultrasound images. IEEE Trans. Imag. Proc., 3(17):392-406, 2008.
    • (2008) IEEE Trans. Imag. Proc. , vol.3 , Issue.17 , pp. 392-406
    • Nascimento, J.C.1    Marques, J.S.2
  • 10
    • 4544290191 scopus 로고    scopus 로고
    • Recent advances in the automatic recognition of audiovisual speech
    • G. Potamianos, C. Neti, G. Gravier, and A. Garg. Recent advances in the automatic recognition of audiovisual speech. Proceedings of the IEEE, 91(9), 2003.
    • (2003) Proceedings of the IEEE , vol.91 , Issue.9
    • Potamianos, G.1    Neti, C.2    Gravier, G.3    Garg, A.4
  • 11
    • 34547997615 scopus 로고    scopus 로고
    • Learning a non-linear embedding by preserving class neighbourhood structure
    • R. Salakhutdinov and G. Hinton. Learning a non-linear embedding by preserving class neighbourhood structure. AI and Statistics, 2007.
    • (2007) AI and Statistics
    • Salakhutdinov, R.1    Hinton, G.2
  • 13
    • 0042441163 scopus 로고    scopus 로고
    • Learning object intrinsic structure for robust visual tracking
    • Q. Wang, G. Xu, and H. Ai. Learning object intrinsic structure for robust visual tracking. In Conf. Vis. Patt. Rec., 2003.
    • Conf. Vis. Patt. Rec., 2003
    • Wang, Q.1    Xu, G.2    Ai, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.