-
1
-
-
64549129485
-
Painlevé V and the distribution function of a discontinuous linear statistics in the Laguerre unitary ensembles
-
(18pp)
-
Basor E., Chen Y. Painlevé V and the distribution function of a discontinuous linear statistics in the Laguerre unitary ensembles. J. Phys. A: Math. Theor. 2009, 42:035203. (18pp).
-
(2009)
J. Phys. A: Math. Theor.
, vol.42
, pp. 035203
-
-
Basor, E.1
Chen, Y.2
-
2
-
-
0039924047
-
Asymptotic behavior of the Pollaczek polynomials and their zeros
-
Bo R., Wong R. Asymptotic behavior of the Pollaczek polynomials and their zeros. Stud. Appl. Math. 1996, 96:307-338.
-
(1996)
Stud. Appl. Math.
, vol.96
, pp. 307-338
-
-
Bo, R.1
Wong, R.2
-
3
-
-
0010071739
-
Estimates of the orthogonal polynomials with weight exp(-xm), m an even positive integer
-
Bonan S., Clark D.S. Estimates of the orthogonal polynomials with weight exp(-xm), m an even positive integer. J. Approx. Theory 1986, 46:408-410.
-
(1986)
J. Approx. Theory
, vol.46
, pp. 408-410
-
-
Bonan, S.1
Clark, D.S.2
-
4
-
-
0000627666
-
Orthogonal polynomials and their derivatives, II
-
Bonan S., Lubinsky D.S., Nevai P. Orthogonal polynomials and their derivatives, II. SIAM J. Math. Anal. 1987, 18:1163-1176.
-
(1987)
SIAM J. Math. Anal.
, vol.18
, pp. 1163-1176
-
-
Bonan, S.1
Lubinsky, D.S.2
Nevai, P.3
-
5
-
-
0001204290
-
Orthogonal polynomials and their derivatives, I
-
Bonan S., Nevai P. Orthogonal polynomials and their derivatives, I. J. Approx. Theory 1984, 40:134-147.
-
(1984)
J. Approx. Theory
, vol.40
, pp. 134-147
-
-
Bonan, S.1
Nevai, P.2
-
6
-
-
0041047668
-
Ladder operators and differential equations for orthogonal polynomials
-
Chen Y., Ismail M. Ladder operators and differential equations for orthogonal polynomials. J. Phys. A 1997, 30(22):7817-7829.
-
(1997)
J. Phys. A
, vol.30
, Issue.22
, pp. 7817-7829
-
-
Chen, Y.1
Ismail, M.2
-
7
-
-
13544272009
-
Jacobi polynomials from compatibility conditions
-
Chen Y., Ismail M. Jacobi polynomials from compatibility conditions. Proc. Amer. Math. Soc. 2005, 133(2):465-472.
-
(2005)
Proc. Amer. Math. Soc.
, vol.133
, Issue.2
, pp. 465-472
-
-
Chen, Y.1
Ismail, M.2
-
8
-
-
74149085017
-
Painlevé III and a singular linear statistics in Hermitian random matrix ensembles, I
-
Chen Y., Its A. Painlevé III and a singular linear statistics in Hermitian random matrix ensembles, I. J. Approx. Theory 2009, 10.1016/j.jat.2009.05.005.
-
(2009)
J. Approx. Theory
-
-
Chen, Y.1
Its, A.2
-
9
-
-
0032653579
-
Smoothness theorems for generalized symmetric Pollaczek weights on (-1,1)
-
Damelin S.B. Smoothness theorems for generalized symmetric Pollaczek weights on (-1,1). J. Comput. Appl. Math. 1999, 101:87-103.
-
(1999)
J. Comput. Appl. Math.
, vol.101
, pp. 87-103
-
-
Damelin, S.B.1
-
10
-
-
0033459230
-
Strong asymptotics of orthogonal polynomials with respect to exponential weights
-
Deift P., Kriecherbauer T., McLaughlin K.T.-R., Venakides S., Zhou X. Strong asymptotics of orthogonal polynomials with respect to exponential weights. Comm. Pure Appl. Math. 1999, 52(12):1491-1552.
-
(1999)
Comm. Pure Appl. Math.
, vol.52
, Issue.12
, pp. 1491-1552
-
-
Deift, P.1
Kriecherbauer, T.2
McLaughlin, K.T.-R.3
Venakides, S.4
Zhou, X.5
-
11
-
-
0033440723
-
Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and application to universality questions in random matrix theory
-
Deift P., Kriecherbauer T., McLaughlin K.T.-R., Venakides S., Zhou X. Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and application to universality questions in random matrix theory. Comm. Pure Appl. Math. 1999, 52(11):1335-1425.
-
(1999)
Comm. Pure Appl. Math.
, vol.52
, Issue.11
, pp. 1335-1425
-
-
Deift, P.1
Kriecherbauer, T.2
McLaughlin, K.T.-R.3
Venakides, S.4
Zhou, X.5
-
12
-
-
0035417833
-
-
A Riemann-Hilbert approach to asymptotic questions for orthogonal polynomials
-
P. Deift, T. Kriecherbauer, K.T.-R. McLaughlin, S. Venakides, X. Zhou, A Riemann-Hilbert approach to asymptotic questions for orthogonal polynomials, 133 (1-2), 2001, 47-63.
-
(2001)
, vol.133
, Issue.1-2
, pp. 47-63
-
-
Deift, P.1
Kriecherbauer, T.2
McLaughlin, K.T.-R.3
Venakides, S.4
Zhou, X.5
-
13
-
-
1442351602
-
On Rakhmanov's theorem for Jacobi matrices
-
Denisov S.A. On Rakhmanov's theorem for Jacobi matrices. Proc. Amer. Math. Soc. 2004, 132:847-852.
-
(2004)
Proc. Amer. Math. Soc.
, vol.132
, pp. 847-852
-
-
Denisov, S.A.1
-
14
-
-
0000533283
-
Discrete Painlevé equations and their appearance in quantum gravity
-
Fokas A.S., Its A.R., Kitaev A.V. Discrete Painlevé equations and their appearance in quantum gravity. Comm. Math. Phys. 1991, 142(2):313-344.
-
(1991)
Comm. Math. Phys.
, vol.142
, Issue.2
, pp. 313-344
-
-
Fokas, A.S.1
Its, A.R.2
Kitaev, A.V.3
-
15
-
-
0001283085
-
The isomonodromy approach to matrix models in 2D quantum gravity
-
Fokas A.S., Its A.R., Kitaev A.V. The isomonodromy approach to matrix models in 2D quantum gravity. Comm. Math. Phys. 1992, 147(2):395-430.
-
(1992)
Comm. Math. Phys.
, vol.147
, Issue.2
, pp. 395-430
-
-
Fokas, A.S.1
Its, A.R.2
Kitaev, A.V.3
-
16
-
-
78149414470
-
-
Orthogonal polynomials: estimates, asymptotic formulas, and series of polynomials orthogonal on the unit circle and on an interval, Consultant Bureau
-
Ya.L. Geronimus, Orthogonal polynomials: estimates, asymptotic formulas, and series of polynomials orthogonal on the unit circle and on an interval, Consultant Bureau, 1961.
-
(1961)
-
-
Geronimus, Ya.L.1
-
17
-
-
49049148970
-
Monodromy preserving deformation of linear ordinary differential equations with rational coefficients, II
-
Jimbo M., Miwa T. Monodromy preserving deformation of linear ordinary differential equations with rational coefficients, II. Physica D 1981, 2:407-448.
-
(1981)
Physica D
, vol.2
, pp. 407-448
-
-
Jimbo, M.1
Miwa, T.2
-
18
-
-
0010154007
-
Forward and converse theorems of polynomial approximation for exponential weights on [-1,1], I, II
-
Lubinsky D.S. Forward and converse theorems of polynomial approximation for exponential weights on [-1,1], I, II. J. Approx. Theory 1997, 91(1-47):48-83.
-
(1997)
J. Approx. Theory
, vol.91
, Issue.1-47
, pp. 48-83
-
-
Lubinsky, D.S.1
-
20
-
-
33847660860
-
Ideal basis sets for the Dirac Coulomb problem: eigenvalue bounds and convergence proofs
-
(50pp)
-
Munger C.T. Ideal basis sets for the Dirac Coulomb problem: eigenvalue bounds and convergence proofs. J. Math. Phys. 2007, 48:022301. (50pp).
-
(2007)
J. Math. Phys.
, vol.48
, pp. 022301
-
-
Munger, C.T.1
-
22
-
-
2942659514
-
Denisov's theorem on recurrence coefficients
-
Nevai P., Totik V. Denisov's theorem on recurrence coefficients. J. Approx. Theory 2004, 127:240-245.
-
(2004)
J. Approx. Theory
, vol.127
, pp. 240-245
-
-
Nevai, P.1
Totik, V.2
-
23
-
-
0000639109
-
On the τ-function of the Painlevé equations
-
Okamoto K. On the τ-function of the Painlevé equations. Physica D 1981, 2:525-535.
-
(1981)
Physica D
, vol.2
, pp. 525-535
-
-
Okamoto, K.1
-
24
-
-
11744311462
-
A differential equation for orthogonal polynomials
-
Shohat J. A differential equation for orthogonal polynomials. Duke Math. J. 1939, 5:401-417.
-
(1939)
Duke Math. J.
, vol.5
, pp. 401-417
-
-
Shohat, J.1
-
26
-
-
0003217929
-
Orthogonal Polynomials
-
Amer. Math. Soc., Providence, RI
-
Szegf{double-struck} G. Orthogonal Polynomials. AMS Colloquium Publications 1975, vol. 23. Amer. Math. Soc., Providence, RI. 4th ed.
-
(1975)
AMS Colloquium Publications
, vol.23
-
-
Szegf, G.1
-
27
-
-
0025411401
-
Pollaczek polynomials and summability methods
-
Van Assche W. Pollaczek polynomials and summability methods. J. Math. Anal. Appl. 1990, 147:498-505.
-
(1990)
J. Math. Anal. Appl.
, vol.147
, pp. 498-505
-
-
Van Assche, W.1
-
28
-
-
36149037480
-
Two-electron perturbation problems and Pollaczek polynomials
-
Watson G.I. Two-electron perturbation problems and Pollaczek polynomials. J. Phys. A 1991, 24:4989-4998.
-
(1991)
J. Phys. A
, vol.24
, pp. 4989-4998
-
-
Watson, G.I.1
-
29
-
-
33947194305
-
An infinite asymptotic expansion for the extreme zeros of the Pollaczek polynomials
-
Zhou J.-R., Zhao Y.-Q. An infinite asymptotic expansion for the extreme zeros of the Pollaczek polynomials. Stud. Appl. Math. 2007, 118:255-279.
-
(2007)
Stud. Appl. Math.
, vol.118
, pp. 255-279
-
-
Zhou, J.-R.1
Zhao, Y.-Q.2
|