메뉴 건너뛰기




Volumn 79, Issue 1-2, 2010, Pages 227-255

Inductive transfer for learning Bayesian networks

Author keywords

Bayesian networks; Inductive transfer; Parameter learning; Structure learning

Indexed keywords

LEARNING SYSTEMS;

EID: 78149401395     PISSN: 08856125     EISSN: 15730565     Source Type: Journal    
DOI: 10.1007/s10994-009-5160-4     Document Type: Article
Times cited : (65)

References (22)
  • 1
    • 0031187873 scopus 로고    scopus 로고
    • A Bayesian/Information Theoretic Model of Learning to Learn via Multiple Task Sampling
    • Baxter, J. (1997). A Bayesian/information theoretic model of learning to learn via multiple task sampling. Machine Learning, 28(1), 7-39. (Pubitemid 127507168)
    • (1997) Machine Learning , vol.28 , Issue.1 , pp. 7-39
    • Baxter, J.1
  • 3
    • 0031273462 scopus 로고    scopus 로고
    • Adaptive probabilistic networks with hidden variables
    • Binder, J., Koller, D., Russell, S., & Kanazawa, K. (1997). Adaptive probabilistic networks with hidden variables. Machine Learning, 29(2-3), 213-244. (Pubitemid 127510039)
    • (1997) Machine Learning , vol.29 , Issue.2-3 , pp. 213-244
    • Binder, J.1    Koller, D.2    Russell, S.3    Kanazawa, K.4
  • 4
    • 0031189914 scopus 로고    scopus 로고
    • Multitask learning
    • Caruana, R. (1997). Multitask learning. Machine Learning, 28(1), 41-75. (Pubitemid 127507169)
    • (1997) Machine Learning , vol.28 , Issue.1 , pp. 41-75
    • Caruana, R.1
  • 5
    • 0029752922 scopus 로고    scopus 로고
    • Aggregate functions over probabilisitic data
    • Chang, C.-S., & Chen, A. L. P. (1996). Aggregate functions over probabilisitic data. Informing Science, 88(1- 4), 15-45.
    • (1996) Informing Science , vol.88 , Issue.1-4 , pp. 15-45
    • Chang, C.-S.1    Chen, A.L.P.2
  • 7
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • Cooper, G. F., & Herskovits, E. (1992). A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9(4), 309-347.
    • (1992) Machine Learning , vol.9 , Issue.4 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.2
  • 8
    • 36348931609 scopus 로고    scopus 로고
    • Transferring Naive Bayes classifiers for text classification
    • AAAI-07/IAAI-07 Proceedings: 22nd AAAI Conference on Artificial Intelligence and the 19th Innovative Applications of Artificial Intelligence Conference
    • Dai,W., Xue, G., Yang, Q., & Yu, Y. (2007). Trasfer naive Bayes classifiers for text classification. In Proceedings of the twenty-second AAAI conference on artificial intelligence (AAAI-07) (pp. 540-545). Menlo Park: AAAI Press. (Pubitemid 350149626)
    • (2007) Proceedings of the National Conference on Artificial Intelligence , vol.1 , pp. 540-545
    • Dai, W.1    Xue, G.-R.2    Yang, Q.3    Yu, Y.4
  • 9
    • 8344276113 scopus 로고    scopus 로고
    • Elvira: An environment for creating and using probabilistic graphical models
    • November, 2002, Cuenca (Spain). Electronic Proceedings
    • Elvira (2002). Elvira: an environment for creating and using probabilistic graphical models. In J. A. Gámez & A. Salmeron (Eds.), First European workshop on probabilistic graphical models, 6-8 November, 2002, Cuenca (Spain). Electronic Proceedings.
    • (2002) First European Workshop on Probabilistic Graphical Models , pp. 6-8
    • Elvira1
  • 11
    • 84972539429 scopus 로고
    • Combining probability distributions: A critique and an annotated bibliography
    • Genest, C., & Zidek, J. V. (1986). Combining probability distributions: a critique and an annotated bibliography. Statistical Science, 1(1), 114-148.
    • (1986) Statistical Science , vol.1 , Issue.1 , pp. 114-148
    • Genest, C.1    Zidek, J.V.2
  • 12
    • 0028482006 scopus 로고
    • Learning Bayesian belief networks: An approach based on the MDL principle
    • Lam,W., & Bacchus, F. (1994). Learning Bayesian belief networks: an approach based on the MDL principle. Computational Intelligence, 10, 269-293.
    • (1994) Computational Intelligence , vol.10 , pp. 269-293
    • Lam, W.1    Bacchus, F.2
  • 17
    • 1942516830 scopus 로고    scopus 로고
    • Learning with knowledge from multiple experts
    • 2003), August 21-24, 2003, Washington DC, USA (pp. 624-631). Menlo Park: AAAI Press
    • Richardson, M., & Domingos, P. (2003). Learning with knowledge from multiple experts. In T. Fawcett & N. Mishra (Eds.), Machine learning, Proceedings of the Twentieth International Conference (ICML 2003), August 21-24, 2003, Washington, DC, USA (pp. 624-631). Menlo Park: AAAI Press.
    • (2003) Machine Learning, Proceedings of the Twentieth International Conference ICML
    • Richardson, M.1    Domingos, P.2
  • 19
    • 84954358258 scopus 로고    scopus 로고
    • Inductive transfer with context-sensitive neural networks
    • Silver, D., Poirier, R., & Currie, D. (2008). Inductive transfer with context-sensitive neural networks. Machine Learning, 73(3), 313-336.
    • (2008) Machine Learning , vol.73 , Issue.3 , pp. 313-336
    • Silver, D.1    Poirier, R.2    Currie, D.3
  • 21
    • 85031124575 scopus 로고    scopus 로고
    • Is learning the n-th thing any easier than learning the first?
    • Cambridge: MIT Press
    • Thrun, S. (1996). Is learning the n-th thing any easier than learning the first? In D. S. Touretzky, M. C. Mozer, & M. E. Hasselmo (Eds.), Advances in Neural Information Processing Systems (vol. 8, pp. 640-646). Cambridge: MIT Press.
    • (1996) Advances in Neural Information Processing Systems , vol.8 , pp. 640-646
    • Thrun, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.