메뉴 건너뛰기




Volumn 31, Issue 10, 2010, Pages 1291-1307

Tracking time-varying cerebral autoregulation in response to changes in respiratory PaCO2

Author keywords

Adaptive filter; Cerebral autoregulation; Time varying system identification

Indexed keywords

ADAPTIVE FILTERING; ADAPTIVE FILTERS; BANDPASS FILTERS; BLOOD PRESSURE; BLOOD VESSELS; CARBON DIOXIDE; FLOW VELOCITY; TIME VARYING SYSTEMS;

EID: 78149343230     PISSN: 09673334     EISSN: 13616579     Source Type: Journal    
DOI: 10.1088/0967-3334/31/10/001     Document Type: Article
Times cited : (26)

References (45)
  • 1
    • 0024534383 scopus 로고
    • Cerebral autoregulation dynamics in humans
    • Aaslid R et al 1989 Cerebral autoregulation dynamics in humans Stroke 20 45-52
    • (1989) Stroke , vol.20 , pp. 45-52
    • Aaslid, R.1
  • 2
    • 0021804637 scopus 로고
    • Cerebral blood flow in hypertension
    • Barry D 1985 Cerebral blood flow in hypertension J. Cardiovasc. Pharmacol. 7 S94-8
    • (1985) J. Cardiovasc. Pharmacol. , vol.7
    • Barry, D.1
  • 3
    • 0028962868 scopus 로고
    • Assessment of autoregulation by means of periodic changes in blood pressure
    • Birch A et al 1995 Assessment of autoregulation by means of periodic changes in blood pressure Stroke 26 834-7
    • (1995) Stroke , vol.26 , pp. 834-837
    • Birch, A.1
  • 4
    • 0036168928 scopus 로고    scopus 로고
    • Repeatability of cerebral autoregulation assessment
    • Birch A et al 2002 Repeatability of cerebral autoregulation assessment Physiol. Meas. 23 73-83
    • (2002) Physiol. Meas , vol.23 , pp. 73-83
    • Birch, A.1
  • 5
    • 54049109988 scopus 로고    scopus 로고
    • Analysis of nonstationarity in renal autoregulation mechanisms using time-varying transfer and coherence functions
    • Chon K et al 2008 Analysis of nonstationarity in renal autoregulation mechanisms using time-varying transfer and coherence functions Am. J. Physiol. Regul. Integr. Comp. Physiol. 295 R821-8
    • (2008) Am. J. Physiol. Regul. Integr. Comp. Physiol. , vol.295
    • Chon, K.1
  • 6
    • 0030927177 scopus 로고    scopus 로고
    • Continuous assessment of the cerebral vasomotor reactivity in head injury
    • Czosnyka M et al 1997 Continuous assessment of the cerebral vasomotor reactivity in head injury Neurosurgery 41 11-7
    • (1997) Neurosurgery , vol.41 , pp. 11-17
    • Czosnyka, M.1
  • 7
    • 0034766739 scopus 로고    scopus 로고
    • Cerebral autoregulation following head injury
    • Czosnyka M et al 2001 Cerebral autoregulation following head injury J. Neurosurg. 95 756-63
    • (2001) J. Neurosurg. , vol.95 , pp. 756-763
    • Czosnyka, M.1
  • 8
    • 37548999382 scopus 로고    scopus 로고
    • An assessment of dynamic autoregulation from spontaneous fluctuations ofcerebral blood flow velocity: A comparison of two models, index of autoregulation and mean flow index
    • Czosnyka M et al 2008 An assessment of dynamic autoregulation from spontaneous fluctuations ofcerebral blood flow velocity: a comparison of two models, index of autoregulation and mean flow index Anesth. Analg. 106 234-9
    • (2008) Anesth. Analg. , vol.106 , pp. 234-239
    • Czosnyka, M.1
  • 9
    • 0029126083 scopus 로고
    • Phase relationship between cerebral blood flow velocity and blood pressure: A clinical test of autoregulation
    • Diehl R et al 1995 Phase relationship between cerebral blood flow velocity and blood pressure: a clinical test of autoregulation Stroke 26 1801-4
    • (1995) Stroke , vol.26 , pp. 1801-1804
    • Diehl, R.1
  • 12
    • 0025162636 scopus 로고
    • The frequency-dependent behavior of cerebral autoregulation
    • Giller C 1990 The frequency-dependent behavior of cerebral autoregulation Neurosurgery 27 362-8
    • (1990) Neurosurgery , vol.27 , pp. 362-368
    • Giller, C.1
  • 13
    • 0027262320 scopus 로고
    • Cerebral arterial diameters during changes in blood pressure and carbon dioxide during craniotomy
    • Giller C et al 1993 Cerebral arterial diameters during changes in blood pressure and carbon dioxide during craniotomy Neurosurgery 32 737-41
    • (1993) Neurosurgery , vol.32 , pp. 737-741
    • Giller, C.1
  • 15
    • 31544476594 scopus 로고    scopus 로고
    • Nonlinear analysis of cerebral hemodynamic and intracranial pressure signals for characterization of autoregulation
    • Hu X et al 2006 Nonlinear analysis of cerebral hemodynamic and intracranial pressure signals for characterization of autoregulation IEEE Trans. Biomed. Eng. 53 195-209
    • (2006) IEEE Trans. Biomed. Eng. , vol.53 , pp. 195-209
    • Hu, X.1
  • 16
    • 0023579687 scopus 로고
    • Failure of autoregulation of cerebral blood flow in neonates studied by pulsed Doppler ultrasound of the internal carotid artery
    • Jorch G and Jorch N 1987 Failure of autoregulation of cerebral blood flow in neonates studied by pulsed Doppler ultrasound of the internal carotid artery Eur. J. Pediatr. 146 468-72
    • (1987) Eur. J. Pediatr. , vol.146 , pp. 468-472
    • Jorch, G.1    Jorch, N.2
  • 19
    • 0142042955 scopus 로고    scopus 로고
    • Dynamic cerebral autoregulation assessment using an ARX model: Comparative study using step response and phase shift analysis
    • Liu Y et al 2003 Dynamic cerebral autoregulation assessment using an ARX model: comparative study using step response and phase shift analysis Med. Eng. Phys. 25 647-53
    • (2003) Med. Eng. Phys. , vol.25 , pp. 647-653
    • Liu, Y.1
  • 20
    • 23744476758 scopus 로고    scopus 로고
    • High spontaneous fluctuation in arterial blood pressure improves the assessment of cerebral autoregulation
    • Liu J et al 2005 High spontaneous fluctuation in arterial blood pressure improves the assessment of cerebral autoregulation Physiol. Meas. 26 725-41
    • (2005) Physiol. Meas , vol.26 , pp. 725-741
    • Liu, J.1
  • 21
    • 0036757058 scopus 로고    scopus 로고
    • Analysis of dynamic cerebral autoregulation using an arx model based on arterial blood pressure and middle cerebral artery velocity simulation
    • Liu Y and Allen R 2002 Analysis of dynamic cerebral autoregulation using an arx model based on arterial blood pressure and middle cerebral artery velocity simulation Med. Biol. Eng. Comput. 40 600-5
    • (2002) Med. Biol. Eng. Comput. , vol.40 , pp. 600-605
    • Liu, Y.1    Allen, R.2
  • 22
    • 0033980262 scopus 로고    scopus 로고
    • Assessment of the thigh cuff technique for measurement of dynamic cerebral autoregulation
    • Mahony P et al 2000 Assessment of the thigh cuff technique for measurement of dynamic cerebral autoregulation Stroke 31 476-80
    • (2000) Stroke , vol.31 , pp. 476-480
    • Mahony, P.1
  • 24
    • 13144302938 scopus 로고    scopus 로고
    • Multimodal pressure-flow method to assess dynamics of cerebral autoregulation in stroke and hypertension
    • Novak V et al 2004 Multimodal pressure-flow method to assess dynamics of cerebral autoregulation in stroke and hypertension Biomed. Eng. Online 3 39
    • (2004) Biomed. Eng. Online , vol.3 , pp. 39
    • Novak, V.1
  • 25
    • 68849122688 scopus 로고    scopus 로고
    • Transcranial Doppler for evaluation of cerebral autoregulation
    • Panerai R 2009 Transcranial Doppler for evaluation of cerebral autoregulation Clin. Auton. Res. 19 197-211
    • (2009) Clin. Auton. Res. , vol.19 , pp. 197-211
    • Panerai, R.1
  • 26
    • 0032078087 scopus 로고    scopus 로고
    • Frequency-domain analysis of cerebral autoregulation from spontaneous fluctuations in arterial blood pressure
    • Panerai R et al 1998 Frequency-domain analysis of cerebral autoregulation from spontaneous fluctuations in arterial blood pressure Med. Biol. Eng. Comput. 36 315-22
    • (1998) Med. Biol. Eng. Comput. , vol.36 , pp. 315-322
    • Panerai, R.1
  • 28
    • 0034011185 scopus 로고    scopus 로고
    • Multivariate dynamic analysis of cerebral blood flow regulation in humans
    • Panerai R et al 2000 Multivariate dynamic analysis of cerebral blood flow regulation in humans IEEE Trans. Biomed. Eng. 47 419-23
    • (2000) IEEE Trans. Biomed. Eng. , vol.47 , pp. 419-423
    • Panerai, R.1
  • 29
    • 0037274901 scopus 로고    scopus 로고
    • Short-term variability of cerebral blood flow velocity responses to arterial blood pressure transients
    • Panerai R et al 2003a Short-term variability of cerebral blood flow velocity responses to arterial blood pressure transients Ultrasound Med. Biol. 29 31-8
    • (2003) Ultrasound Med. Biol. , vol.29 , pp. 31-38
    • Panerai, R.1
  • 30
    • 0038100611 scopus 로고    scopus 로고
    • Indices of dynamic cerebral autoregulation
    • Panerai R et al 2003b Indices of dynamic cerebral autoregulation Physiol. Meas. 24 367-81
    • (2003) Physiol. Meas , vol.24 , pp. 367-381
    • Panerai, R.1
  • 32
    • 0025437969 scopus 로고
    • Cerebral autoregulation Cerebrovasc
    • Paulson O et al 1990 Cerebral autoregulation Cerebrovasc. Brain Metab. Rev. 2 161-92
    • (1990) Brain Metab. Rev. , vol.2 , pp. 161-192
    • Paulson, O.1
  • 33
    • 33744774668 scopus 로고    scopus 로고
    • Combined transfer function analysis and modelling of cerebral autoregulation
    • Payne S and Tarassenko L 2006 Combined transfer function analysis and modelling of cerebral autoregulation Ann. Biomed. Eng. 34 847-58
    • (2006) Ann. Biomed. Eng. , vol.34 , pp. 847-858
    • Payne, S.1    Tarassenko, L.2
  • 34
    • 70349678706 scopus 로고    scopus 로고
    • 2 reactivity on cerebral oxygen transport
    • 2 reactivity on cerebral oxygen transport Ann. Biomed. Eng. 37 2288-98
    • (2009) Ann. Biomed. Eng. , vol.37 , pp. 2288-2298
    • Payne, S.J.1
  • 36
    • 0033772207 scopus 로고    scopus 로고
    • Grading of cerebral autoregulation in preterm and term neonates
    • Prashant K V et al 2000 Grading of cerebral autoregulation in preterm and term neonates Pediatr. Neurol. 23 236-42
    • (2000) Pediatr. Neurol. , vol.23 , pp. 236-242
    • Prashant, K.V.1
  • 37
    • 0023819675 scopus 로고
    • 2-induced cerebral vasomotor response in normal individuals and patients with internal carotid artery occlusions
    • 2-induced cerebral vasomotor response in normal individuals and patients with internal carotid artery occlusions Stroke 19 963-9
    • (1988) Stroke , vol.19 , pp. 963-969
    • Ringelstein, E.1
  • 39
    • 0034745188 scopus 로고    scopus 로고
    • A parametric approach to measuring cerebral blood flow autoregulation from spontaneous variations in blood pressure
    • Simpson D et al 2001 A parametric approach to measuring cerebral blood flow autoregulation from spontaneous variations in blood pressure Ann. Biomed. Eng. 29 18-25
    • (2001) Ann. Biomed. Eng. , vol.29 , pp. 18-25
    • Simpson, D.1
  • 40
    • 2942709653 scopus 로고    scopus 로고
    • Assessing blood flow control through a bootstrap method
    • Simpson D et al 2004 Assessing blood flow control through a bootstrap method IEEE Trans. Biomed. Eng. 51 1284-6
    • (2004) IEEE Trans. Biomed. Eng. , vol.51 , pp. 1284-1286
    • Simpson, D.1
  • 41
    • 0028999649 scopus 로고
    • Dynamic and static cerebral autoregulation during isoflurane, desflurane, and propofol anesthesia
    • Strebel S et al 1995 Dynamic and static cerebral autoregulation during isoflurane, desflurane, and propofol anesthesia Anesthesiology 83 66-76
    • (1995) Anesthesiology , vol.83 , pp. 66-76
    • Strebel, S.1
  • 42
    • 0029036913 scopus 로고
    • Comparison of static and dynamic cerebral autoregulation measurements
    • Tiecks F et al 1995 Comparison of static and dynamic cerebral autoregulation measurements Stroke 26 1014-9
    • (1995) Stroke , vol.26 , pp. 1014-1019
    • Tiecks, F.1
  • 44
    • 33750854607 scopus 로고    scopus 로고
    • Transfer function analysis of dynamic cerebral autoregulation in humans
    • Zhang R et al 1998 Transfer function analysis of dynamic cerebral autoregulation in humans Am. J. Physiol. Heart Circ. Physiol. 274 H233-41
    • (1998) Am. J. Physiol. Heart Circ. Physiol. , vol.274
    • Zhang, R.1
  • 45
    • 1642471643 scopus 로고    scopus 로고
    • Robust algorithm for estimation of time-varying transfer functions
    • Zou R and Chon K 2004 Robust algorithm for estimation of time-varying transfer functions IEEE Trans. Biomed. Eng. 51 219-228
    • (2004) IEEE Trans. Biomed. Eng. , vol.51 , pp. 219-228
    • Zou, R.1    Chon, K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.