-
1
-
-
0030194237
-
Generalized conjugate gradient squared
-
D. R. Fokkema, G. L. G. Sleijpen, and H. A. van der Vorst, Generalized conjugate gradient squared, J. Comput. Appl. Math., 71 (1996), pp. 125-146.
-
(1996)
J. Comput. Appl. Math.
, vol.71
, pp. 125-146
-
-
Fokkema, D.R.1
Sleijpen, G.L.G.2
Van Der Vorst, H.A.3
-
2
-
-
0000846539
-
Variants of BICGSTAB for matrices with complex spectrum
-
M. H. Gutknecht, Variants of BICGSTAB for matrices with complex spectrum, SIAMJ. Sci. Comput., 14 (1993), pp. 1020-1033.
-
(1993)
SIAMJ. Sci. Comput.
, vol.14
, pp. 1020-1033
-
-
Gutknecht, M.H.1
-
4
-
-
0034144748
-
Look-ahead procedures for Lanczos-type product methods based on three-term Lanczos recurrences
-
M. H. Gutknecht and K. J. Ressel, Look-ahead procedures for Lanczos-type product methods based on three-term Lanczos recurrences, SIAM J. Matrix Anal. Appl., 21 (2000), pp. 1051- 1078.
-
(2000)
SIAM J. Matrix Anal. Appl.
, vol.21
, pp. 1051-1078
-
-
Gutknecht, M.H.1
Ressel, K.J.2
-
5
-
-
0001746830
-
QMR smoothing for Lanczos-type product methods based on three-term recurrences
-
K. J. Ressel and M. H. Gutknecht, QMR smoothing for Lanczos-type product methods based on three-term recurrences, SIAM J. Sci. Comput., 19 (1998), pp. 55-73.
-
(1998)
SIAM J. Sci. Comput.
, vol.19
, pp. 55-73
-
-
Ressel, K.J.1
Gutknecht, M.H.2
-
6
-
-
0001845470
-
BiCGstab(l) for linear equations involving unsymmetric matrices with complex spectrum
-
G. L. G. Sleijpen and D. R. Fokkema, BiCGstab(l) for linear equations involving unsymmetric matrices with complex spectrum, Electron. Trans. Numer. Anal., 1 (1993), pp. 11-32.
-
(1993)
Electron. Trans. Numer. Anal.
, vol.1
, pp. 11-32
-
-
Sleijpen, G.L.G.1
Fokkema, D.R.2
-
7
-
-
77957720088
-
Bi-CGSTAB as an induced dimension reduction method
-
DOI: 10.1016/j.apnum.2009.07.001
-
G. L. G. Sleijpen, P. Sonneveld, and M. B. van Gijzen, Bi-CGSTAB as an induced dimension reduction method, Appl. Numer. Math., (2009), DOI: 10.1016/j.apnum.2009.07.001.
-
(2009)
Appl. Numer. Math.
-
-
Sleijpen, G.L.G.1
Sonneveld, P.2
Van Gijzen, M.B.3
-
8
-
-
0000466442
-
Maintaining convergence properties of BiCGstab methods in finite precision arithmetic
-
G. L. G. Sleijpen and H. A. van der Vorst, Maintaining convergence properties of BiCGstab methods in finite precision arithmetic, Numer. Algorithms, 10 (1995), pp. 203-223.
-
(1995)
Numer. Algorithms
, vol.10
, pp. 203-223
-
-
Sleijpen, G.L.G.1
Van Der Vorst, H.A.2
-
9
-
-
0029732659
-
Reliable updated residuals in hybrid Bi-CG methods
-
G. L. G. Sleijpen and H. A. van der Vorst, Reliable updated residuals in hybrid Bi-CG methods, Comput., 56 (1996), pp. 141-163.
-
(1996)
Comput.
, vol.56
, pp. 141-163
-
-
Sleijpen, G.L.G.1
Van Der Vorst, H.A.2
-
10
-
-
77954669396
-
-
Report ISSN, Department of Applied Mathematical Analysis, Delft University of Technology, The Netherlands
-
G. L. G. Sleijpen and M. B. van Gijzen, BiCGstab(l) Strategies to Induce Dimension Reduction, Report ISSN 1389-6520, Department of Applied Mathematical Analysis, Delft University of Technology, The Netherlands, 2009.
-
(2009)
BiCGstab(l) Strategies to Induce Dimension Reduction
, pp. 1389-6520
-
-
Sleijpen, G.L.G.1
Van Gijzen, M.B.2
-
11
-
-
0002716979
-
CGS, a fast Lanczos-type solver for nonsymmetric linear systems
-
P. Sonneveld, CGS, a fast Lanczos-type solver for nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 10 (1989), pp. 36-52.
-
(1989)
SIAM J. Sci. Statist. Comput.
, vol.10
, pp. 36-52
-
-
Sonneveld, P.1
-
12
-
-
67649522218
-
IDR(s): A family of simple and fast algorithms for solving large nonsymmetric systems of linear equations
-
P. Sonneveld and M. B. van Gijzen, IDR(s): A family of simple and fast algorithms for solving large nonsymmetric systems of linear equations, SIAM J. Sci. Comput., 31 (2008), pp. 1035-1062.
-
(2008)
SIAM J. Sci. Comput.
, vol.31
, pp. 1035-1062
-
-
Sonneveld, P.1
Van Gijzen, M.B.2
-
13
-
-
77955687837
-
-
Report METR, Department of Mathematical Informatics, University of Tokyo, Japan
-
M. Tanio and M. Sugihara, GBi-CGSTAB(s,L): IDR(s) with Higher-Order Stabilization Polynomials, Report METR 2009-2016, Department of Mathematical Informatics, University of Tokyo, Japan, 2009.
-
(2009)
GBi-CGSTAB(s,L): IDR(s) with Higher-Order Stabilization Polynomials
, pp. 2009-2016
-
-
Tanio, M.1
Sugihara, M.2
-
14
-
-
0000005482
-
Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems
-
H. A. van der Vorst, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 13 (1992), pp. 631-644.
-
(1992)
SIAM J. Sci. Statist. Comput.
, vol.13
, pp. 631-644
-
-
Van Der Vorst, H.A.1
-
15
-
-
77955680740
-
-
Preprint, Delft Institute of Applied Mathematics, Delft University of Technology, Delft, The Netherlands
-
M. van Gijzen and P. Sonneveld, An Elegant IDR(s) Variant That Efficiently Exploits Biorthogonality Properties, Preprint 08-21, Delft Institute of Applied Mathematics, Delft University of Technology, Delft, The Netherlands, 2008.
-
(2008)
An Elegant IDR(s) Variant That Efficiently Exploits Biorthogonality Properties
, pp. 08-21
-
-
Van Gijzen, M.1
Sonneveld, P.2
-
16
-
-
85042569866
-
Numerical experiments with a multiple grid and a preconditioned Lanczos type method
-
Springer Verlag, Heidelberg
-
P. Wesseling and P. Sonneveld, Numerical experiments with a multiple grid and a preconditioned Lanczos type method, in Approximation Methods for Navier-Stokes Problems, Lecture Notes in Math. 771, Springer Verlag, Heidelberg, 1980, pp. 543-562.
-
(1980)
Approximation Methods for Navier-Stokes Problems, Lecture Notes in Math.
, vol.771
, pp. 543-562
-
-
Wesseling, P.1
Sonneveld, P.2
-
17
-
-
0033294667
-
ML(k)BiCGSTAB: A BiCGSTAB variant based on multiple Lanczos starting vectors
-
M.-C. Yeung and T. F. Chan, ML(k)BiCGSTAB: A BiCGSTAB variant based on multiple Lanczos starting vectors, SIAM J. Sci. Comput., 21 (1999), pp. 1263-1290.
-
(1999)
SIAM J. Sci. Comput.
, vol.21
, pp. 1263-1290
-
-
Yeung, M.-C.1
Chan, T.F.2
-
18
-
-
0031082725
-
GPBi-CG: Generalized product-type methods based on Bi-CG for solving nonsymmetric linear systems
-
S.-L. Zhang, GPBi-CG: Generalized product-type methods based on Bi-CG for solving nonsymmetric linear systems, SIAM J. Sci. Comput., 18 (1997), pp. 537-551.
-
(1997)
SIAM J. Sci. Comput.
, vol.18
, pp. 537-551
-
-
Zhang, S.-L.1
|