-
1
-
-
33750054976
-
Constant-Factor Approximation for Minimum-Weight (Connected) Dominating Sets in Unit Disk Graphs
-
Díaz, J., Jansen, K., Rolim, J.D.P., Zwick, U. (eds.) APPROX 2006 and RANDOM 2006. Springer, Heidelberg
-
Ambühl, C., Erlebach, T., Mihalák, M., Nunkesser, M.: Constant-Factor Approximation for Minimum-Weight (Connected) Dominating Sets in Unit Disk Graphs. In: Díaz, J., Jansen, K., Rolim, J.D.P., Zwick, U. (eds.) APPROX 2006 and RANDOM 2006. LNCS, vol. 4110, pp. 3-14. Springer, Heidelberg (2006)
-
(2006)
LNCS
, vol.4110
, pp. 3-14
-
-
Ambühl, C.1
Erlebach, T.2
Mihalák, M.3
Nunkesser, M.4
-
2
-
-
25044445636
-
Almost Optimal Set Covers in Finite VC-Dimension
-
Brönnimann, H., Goodrich, M.T.: Almost Optimal Set Covers in Finite VC-Dimension. Discrete Comput. Geom. 14(1), 463-479 (1995)
-
(1995)
Discrete Comput. Geom.
, vol.14
, Issue.1
, pp. 463-479
-
-
Brönnimann, H.1
Goodrich, M.T.2
-
3
-
-
38149068205
-
Covering Points by Unit Disks of Fixed Location
-
Tokuyama, T. (ed.) ISAAC 2007. Springer, Heidelberg
-
Carmi, P., Katz, M.J., Lev-Tov, N.: Covering Points by Unit Disks of Fixed Location. In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 644-655. Springer, Heidelberg (2007)
-
(2007)
LNCS
, vol.4835
, pp. 644-655
-
-
Carmi, P.1
Katz, M.J.2
Lev-Tov, N.3
-
4
-
-
0000301097
-
A Greedy Heuristic for the Set-Covering Problem
-
Chvátal, V.: A Greedy Heuristic for the Set-Covering Problem. Math. Oper. Research 4(3), 233-235 (1979)
-
(1979)
Math. Oper. Research
, vol.4
, Issue.3
, pp. 233-235
-
-
Chvátal, V.1
-
5
-
-
33846781469
-
Improved Approximation Algorithms for Geometric Set Cover
-
Clarkson, K.L., Varadarajan, K.R.: Improved Approximation Algorithms for Geometric Set Cover. Discrete Comput. Geom. 37(1), 43-58 (2007)
-
(2007)
Discrete Comput. Geom.
, vol.37
, Issue.1
, pp. 43-58
-
-
Clarkson, K.L.1
Varadarajan, K.R.2
-
6
-
-
0035790157
-
Selecting forwarding neighbors in wireless ad hoc networks
-
ACM, New York
-
Cǎlinescu, G., Mandoiu, I.I., Wan, P.J., Zelikovsky, A.: Selecting forwarding neighbors in wireless ad hoc networks. In: Proc. DIAL-M 2001, pp. 34-43. ACM, New York (2001)
-
(2001)
Proc. DIAL-M 2001
, pp. 34-43
-
-
Cǎlinescu, G.1
Mandoiu, I.I.2
Wan, P.J.3
Zelikovsky, A.4
-
7
-
-
59049089756
-
A 5+ε-approximation algorithm for minimum weighted dominating set in unit disk graph
-
Dai, D., Yu, C.: A 5+ε-approximation algorithm for minimum weighted dominating set in unit disk graph. Theoret. Comput. Sci. 410(8-10), 756-765 (2009)
-
(2009)
Theoret. Comput. Sci.
, vol.410
, Issue.8-10
, pp. 756-765
-
-
Dai, D.1
Yu, C.2
-
8
-
-
0039179575
-
The Complexity of the Union of Fat Objects in the Plane
-
Efrat, A., Sharir, M.: The Complexity of the Union of Fat Objects in the Plane. Discrete Comput. Geom. 23(2), 171-189 (2000)
-
(2000)
Discrete Comput. Geom.
, vol.23
, Issue.2
, pp. 171-189
-
-
Efrat, A.1
Sharir, M.2
-
9
-
-
78651241521
-
A (4+epsilon)-Approximation for the Minimum-Weight Dominating Set Problem in Unit Disk Graphs
-
Bampis, E., Jansen, K. (eds.) WAOA 2009. Springer, Heidelberg
-
Erlebach, T., Mihalák, M.: A (4+epsilon)-Approximation for the Minimum-Weight Dominating Set Problem in Unit Disk Graphs. In: Bampis, E., Jansen, K. (eds.) WAOA 2009. LNCS, vol. 5893, pp. 135-146. Springer, Heidelberg (2010)
-
(2010)
LNCS
, vol.5893
, pp. 135-146
-
-
Erlebach, T.1
Mihalák, M.2
-
10
-
-
43049125481
-
Domination in Geometric Intersection Graphs
-
Laber, E.S., Bornstein, C.F., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. Springer, Heidelberg
-
Erlebach, T., van Leeuwen, E.J.: Domination in Geometric Intersection Graphs. In: Laber, E.S., Bornstein, C.F., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS, vol. 4957, pp. 747-758. Springer, Heidelberg (2008)
-
(2008)
LNCS
, vol.4957
, pp. 747-758
-
-
Erlebach, T.1
Van Leeuwen, E.J.2
-
11
-
-
0032108328
-
A Threshold of ln n for Approximating Set Cover
-
Feige, U.: A Threshold of ln n for Approximating Set Cover. J. ACM 45(4), 634-652 (1998)
-
(1998)
J. ACM
, vol.45
, Issue.4
, pp. 634-652
-
-
Feige, U.1
-
12
-
-
0019573312
-
Optimal Packing and Covering in the Plane are NP-Complete
-
Fowler, R.J., Paterson, M.S., Tanimoto, S.L.: Optimal Packing and Covering in the Plane are NP-Complete. Inform. Process. Lett. 12(3), 133-137 (1981)
-
(1981)
Inform. Process. Lett.
, vol.12
, Issue.3
, pp. 133-137
-
-
Fowler, R.J.1
Paterson, M.S.2
Tanimoto, S.L.3
-
13
-
-
58549088753
-
Multiobjective Disk Cover Admits a PTAS
-
Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. Springer, Heidelberg
-
Glaßer, C., Reitwießner, C., Schmitz, H.: Multiobjective Disk Cover Admits a PTAS. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 40-51. Springer, Heidelberg (2008)
-
(2008)
LNCS
, vol.5369
, pp. 40-51
-
-
Glaßer, C.1
Reitwießner, C.2
Schmitz, H.3
-
14
-
-
0026256139
-
Covering a Set of Points in Multidimensional Space
-
Gonzalez, T.F.: Covering a Set of Points in Multidimensional Space. Inform. Process. Lett. 40(4), 181-188 (1991)
-
(1991)
Inform. Process. Lett.
, vol.40
, Issue.4
, pp. 181-188
-
-
Gonzalez, T.F.1
-
16
-
-
0002472851
-
Approximating Covering and Packing Problems: Set Cover, Vertex Cover, Independent Set, and Related Problems
-
Hochbaum, D.S. (ed.) PWS Publishing Company, Boston
-
Hochbaum, D.S.: Approximating Covering and Packing Problems: Set Cover, Vertex Cover, Independent Set, and Related Problems. In: Hochbaum, D.S. (ed.) Approximation Algorithms for NP-hard Problems, pp. 46-93. PWS Publishing Company, Boston (1997)
-
(1997)
Approximation Algorithms for NP-hard Problems
, pp. 46-93
-
-
Hochbaum, D.S.1
-
17
-
-
0021897852
-
Approximation Schemes for Covering and Packing Problems in Image Processing and VLSI
-
Hochbaum, D.S., Maass, W.: Approximation Schemes for Covering and Packing Problems in Image Processing and VLSI. J. ACM 32(1), 130-136 (1985)
-
(1985)
J. ACM
, vol.32
, Issue.1
, pp. 130-136
-
-
Hochbaum, D.S.1
Maass, W.2
-
19
-
-
72449197094
-
A Better Constant-Factor Approximation for Weighted Dominating Set in Unit Disk Graph
-
Huang, Y., Gao, X., Zhang, Z., Wu, W.: A Better Constant-Factor Approximation for Weighted Dominating Set in Unit Disk Graph. J. Combin. Optim. 18(2), 179-194 (2009)
-
(2009)
J. Combin. Optim.
, vol.18
, Issue.2
, pp. 179-194
-
-
Huang, Y.1
Gao, X.2
Zhang, Z.3
Wu, W.4
-
20
-
-
0016349356
-
Approximation algorithms for combinatorial problems
-
Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput. System Sci. 9(3), 256-278 (1974)
-
(1974)
J. Comput. System Sci.
, vol.9
, Issue.3
, pp. 256-278
-
-
Johnson, D.S.1
-
21
-
-
49049130359
-
The NP-Completeness Column: An Ongoing Guide
-
Johnson, D.S.: The NP-Completeness Column: An Ongoing Guide. J. Algorithms 3(2), 182-195 (1982)
-
(1982)
J. Algorithms
, vol.3
, Issue.2
, pp. 182-195
-
-
Johnson, D.S.1
-
22
-
-
0032614948
-
The Budgeted Maximum Coverage Problem
-
Khuller, S., Moss, A., Naor, J.S.: The Budgeted Maximum Coverage Problem. Inform. Process. Lett. 70(1), 39-45 (1999)
-
(1999)
Inform. Process. Lett.
, vol.70
, Issue.1
, pp. 39-45
-
-
Khuller, S.1
Moss, A.2
Naor, J.S.3
-
23
-
-
45749145832
-
3
-
Albers, S., Weil, P. (eds.) Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Dagstuhl
-
3. In: Albers, S., Weil, P. (eds.) Proc. STACS 2008, LIPIcs, vol. 1, pp. 479-490. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Dagstuhl (2008)
-
(2008)
Proc. STACS 2008, LIPIcs
, vol.1
, pp. 479-490
-
-
Laue, S.1
-
24
-
-
78149279631
-
Polynomial time approximation schemes for minimum disk cover problems
-
doi: 10.1007/s10878-009-9216-y
-
Liao, C., Hu, S.: Polynomial time approximation schemes for minimum disk cover problems. J. Global Optim. (2009), doi: 10.1007/s10878-009-9216-y
-
(2009)
J. Global Optim.
-
-
Liao, C.1
Hu, S.2
-
25
-
-
0000203509
-
On the ratio of optimal integral and fractional covers
-
Lovász, L.: On the ratio of optimal integral and fractional covers. Discrete Math. 13(4), 383-390 (1975)
-
(1975)
Discrete Math.
, vol.13
, Issue.4
, pp. 383-390
-
-
Lovász, L.1
-
26
-
-
33750239078
-
Parameterized Complexity of Independence and Domination Problems on Geometric Graphs
-
Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. Springer, Heidelberg
-
Marx, D.: Parameterized Complexity of Independence and Domination Problems on Geometric Graphs. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 154-165. Springer, Heidelberg (2006)
-
(2006)
LNCS
, vol.4169
, pp. 154-165
-
-
Marx, D.1
-
27
-
-
46749156309
-
On the Optimality of Planar and Geometric Approximation Schemes
-
IEEE, Los Alamitos
-
Marx, D.: On the Optimality of Planar and Geometric Approximation Schemes. In: Proc. FOCS 2007, pp. 338-348. IEEE, Los Alamitos (2007)
-
(2007)
Proc. FOCS 2007
, pp. 338-348
-
-
Marx, D.1
-
29
-
-
70849098296
-
PTAS for Geometric Hitting Set Problems via Local Search
-
ACM, New York
-
Mustafa, N., Ray, S.: PTAS for Geometric Hitting Set Problems via Local Search. In: Proc. SoCG 2009, pp. 17-22. ACM, New York (2009)
-
(2009)
Proc. SoCG 2009
, pp. 17-22
-
-
Mustafa, N.1
Ray, S.2
-
30
-
-
38149093893
-
An Improved Approximation Factor for the Unit Disk Covering Problem
-
Narayanappa, S., Vojtěchovský, P.: An Improved Approximation Factor For The Unit Disk Covering Problem. In: Proc. CCCG 2006 (2006)
-
(2006)
Proc. CCCG 2006
-
-
Narayanappa, S.1
Vojtěchovský, P.2
-
32
-
-
77954708483
-
Weighted Geometric Set Cover via Quasi-Uniform Sampling
-
ACM, New York
-
Varadarajan, K.: Weighted Geometric Set Cover via Quasi-Uniform Sampling. In: Proc. STOC 2010, pp. 641-648. ACM, New York (2010)
-
(2010)
Proc. STOC 2010
, pp. 641-648
-
-
Varadarajan, K.1
-
33
-
-
38249002165
-
A Probabilistic Analysis of the Maximal Covering Location Problem
-
Vohra, R., Hall, N.G.: A Probabilistic Analysis of the Maximal Covering Location Problem. Discrete Appl. Math. 43(2), 175-183 (1993)
-
(1993)
Discrete Appl. Math.
, vol.43
, Issue.2
, pp. 175-183
-
-
Vohra, R.1
Hall, N.G.2
-
34
-
-
78650618678
-
New approximations for minimum-weighted dominating sets and minimum-weighted connected dominating sets on unit disk graphs
-
to appear
-
Zou, F., Wang, Y., Xu, X.-H., Li, X., Du, H., Wan, P., Wu, W.: New approximations for minimum-weighted dominating sets and minimum-weighted connected dominating sets on unit disk graphs. Theoret. Comput. Sci. (to appear)
-
Theoret. Comput. Sci.
-
-
Zou, F.1
Wang, Y.2
Xu, X.-H.3
Li, X.4
Du, H.5
Wan, P.6
Wu, W.7
|