메뉴 건너뛰기




Volumn 6314 LNCS, Issue PART 4, 2010, Pages 185-198

Weakly supervised classification of objects in images using soft random forests

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; DECISION TREES; IMAGE CLASSIFICATION; MACHINE LEARNING; OBJECT RECOGNITION;

EID: 78149309489     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-15561-1_14     Document Type: Conference Paper
Times cited : (7)

References (35)
  • 1
    • 33745831956 scopus 로고    scopus 로고
    • Weakly supervised learning of part-based spatial models for visual object recognition
    • Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. Springer, Heidelberg
    • Crandall, D.J., Huttenlocher, D.P.: Weakly supervised learning of part-based spatial models for visual object recognition. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 16-29. Springer, Heidelberg (2006)
    • (2006) LNCS , vol.3951 , pp. 16-29
    • Crandall, D.J.1    Huttenlocher, D.P.2
  • 2
    • 24644479275 scopus 로고    scopus 로고
    • Generative versus discriminative methods for object recognition
    • Ulusoy, I., Bishop, C.M.: Generative versus discriminative methods for object recognition. In: CVPR, vol. 2, pp. 258-265 (2005)
    • (2005) CVPR , vol.2 , pp. 258-265
    • Ulusoy, I.1    Bishop, C.M.2
  • 3
    • 70350385501 scopus 로고    scopus 로고
    • Toward Category-Level Object Recognition
    • Springer, Heidelberg
    • Ponce, J., Hebert, M., Schmid, C., Ziserman, A.: Toward Category-Level Object Recognition. LNCS, vol. 4170. Springer, Heidelberg (2006)
    • (2006) LNCS , vol.4170
    • Ponce, J.1    Hebert, M.2    Schmid, C.3    Ziserman, A.4
  • 4
    • 84944248013 scopus 로고    scopus 로고
    • Unsupervised learning of models for object recognition
    • Vernon, D. (ed.) ECCV 2000. Springer, Heidelberg
    • Weber, M., Welling, M., Perona, P.: Unsupervised learning of models for object recognition. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1842, pp. 18-32. Springer, Heidelberg (2000)
    • (2000) LNCS , vol.1842 , pp. 18-32
    • Weber, M.1    Welling, M.2    Perona, P.3
  • 5
    • 33750397657 scopus 로고    scopus 로고
    • Weakly supervised scaled-invariant learning of models for visual recognition
    • Fergus, R., Perona, P., Zisserman, A.: Weakly supervised scaled-invariant learning of models for visual recognition. IJCV 71, 273-303 (2006)
    • (2006) IJCV , vol.71 , pp. 273-303
    • Fergus, R.1    Perona, P.2    Zisserman, A.3
  • 6
    • 1042266031 scopus 로고    scopus 로고
    • Weakly supervised learning of visual models and its application to content-based retrieval
    • Schmid, C.: Weakly supervised learning of visual models and its application to content-based retrieval. IJCV 56, 7-16 (2004)
    • (2004) IJCV , vol.56 , pp. 7-16
    • Schmid, C.1
  • 7
    • 33845207779 scopus 로고    scopus 로고
    • Bio-mimetic learning from images using imprecise expert information
    • DOI 10.1016/j.fss.2006.10.012, PII S0165011406004192
    • Rossiter, J., Mukai, T.: Bio-mimetic learning from images using imprecise expert information. Fuzzy Set and Systems 158, 295-311 (2007) (Pubitemid 44854207)
    • (2007) Fuzzy Sets and Systems , vol.158 , Issue.3 , pp. 295-311
    • Rossiter, J.1    Mukai, T.2
  • 8
    • 33846195367 scopus 로고    scopus 로고
    • Incorporing uncertainty via hierarchical classification using fuzzy decision trees
    • van de Vlag, D., Stein, A.: Incorporing uncertainty via hierarchical classification using fuzzy decision trees. IEEE Transaction on GRS 45, 237-245 (2007)
    • (2007) IEEE Transaction on GRS , vol.45 , pp. 237-245
    • Van De Vlag, D.1    Stein, A.2
  • 9
    • 77951959394 scopus 로고    scopus 로고
    • Combining image-level and object-level inference for weakly supervised object recognition. Application to fisheries acoustics
    • Lefort, R., Fablet, R., Boucher, J.M.: Combining image-level and object-level inference for weakly supervised object recognition. Application to fisheries acoustics. In: ICIP (2009)
    • (2009) ICIP
    • Lefort, R.1    Fablet, R.2    Boucher, J.M.3
  • 10
    • 0034247568 scopus 로고    scopus 로고
    • A probabilistic exclusion principle for tracking multiple objects
    • Maccormick, J., Blake, A.: A probabilistic exclusion principle for tracking multiple objects. IJCV 39, 57-71 (2000)
    • (2000) IJCV , vol.39 , pp. 57-71
    • Maccormick, J.1    Blake, A.2
  • 14
    • 23844497473 scopus 로고    scopus 로고
    • Logitboost of simple bayesian classifier
    • Kotsiantis, P., Pintelas, P.: Logitboost of simple bayesian classifier. Informatica Journal 29, 53-59 (2005)
    • (2005) Informatica Journal , vol.29 , pp. 53-59
    • Kotsiantis, P.1    Pintelas, P.2
  • 15
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L.: Random forests. Machine Learning 45, 5-32 (2001)
    • (2001) Machine Learning , vol.45 , pp. 5-32
    • Breiman, L.1
  • 16
    • 56749156327 scopus 로고    scopus 로고
    • Keypoint signatures for fast learning and recognition
    • Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. Springer, Heidelberg
    • Calonder, M., Lepetit, V., Fua, P.: Keypoint signatures for fast learning and recognition. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 58-71. Springer, Heidelberg (2008)
    • (2008) LNCS , vol.5302 , pp. 58-71
    • Calonder, M.1    Lepetit, V.2    Fua, P.3
  • 18
    • 33744584654 scopus 로고
    • Induction of decision trees
    • Quinlan, J.: Induction of decision trees. Machine Learning 1, 81-106 (1986)
    • (1986) Machine Learning , vol.1 , pp. 81-106
    • Quinlan, J.1
  • 20
    • 0031312210 scopus 로고    scopus 로고
    • Split selection methods for classification trees
    • Loh, W.Y., Shih, Y.Y.: Split selection methods for classification trees. Statistica Sinica 7, 815-840 (1997)
    • (1997) Statistica Sinica , vol.7 , pp. 815-840
    • Loh, W.Y.1    Shih, Y.Y.2
  • 21
    • 0000661829 scopus 로고
    • An exploratory technique for invesgating large quantities of categorical data
    • Kass, G.V.: An exploratory technique for invesgating large quantities of categorical data. Journal of applied statistics 29, 119-127 (1980)
    • (1980) Journal of Applied Statistics , vol.29 , pp. 119-127
    • Kass, G.V.1
  • 22
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L.: Bagging predictors. Machine Learning 26, 123-140 (1996)
    • (1996) Machine Learning , vol.26 , pp. 123-140
    • Breiman, L.1
  • 23
    • 85057943047 scopus 로고
    • Random decision forest
    • Ho, T.K.: Random decision forest. ICDAR (1995)
    • (1995) ICDAR
    • Ho, T.K.1
  • 25
    • 67650217062 scopus 로고    scopus 로고
    • An iterative algorithm for extending learners to semi-supervised setting
    • Culp, M., Michailidis, G.: An iterative algorithm for extending learners to semi-supervised setting. In: The 2007 Joint Statistical Meetings (2007)
    • (2007) The 2007 Joint Statistical Meetings
    • Culp, M.1    Michailidis, G.2
  • 29
    • 0006009575 scopus 로고    scopus 로고
    • Learning to classify text from labeled and unlabeled documents
    • Nigam, K., McCullum, A., Thrun, S., Mitchel, T.: Learning to classify text from labeled and unlabeled documents. In: AAAIJ (1998)
    • (1998) AAAIJ
    • Nigam, K.1    McCullum, A.2    Thrun, S.3    Mitchel, T.4
  • 30
    • 0033886806 scopus 로고    scopus 로고
    • Text classification from labeled and unlabeled documents using EM
    • Nigam, K., McCallum, A., Thrun, S., Mann, G.: Text classification from labeled and unlabeled documents using em. Machine Learning 39, 103-134 (2000) (Pubitemid 30594822)
    • (2000) Machine Learning , vol.39 , Issue.2 , pp. 103-134
    • Nigam, K.1    Mccallum, A.K.2    Thrun, S.3    Mitchell, T.4
  • 31
    • 1942483137 scopus 로고    scopus 로고
    • Transductive inference for text classification using support vector machines
    • Joachims, T.: Transductive inference for text classification using support vector machines. In: ICML, pp. 200-209 (1999)
    • (1999) ICML , pp. 200-209
    • Joachims, T.1
  • 32
    • 1942484430 scopus 로고    scopus 로고
    • Semi-supervised learning using gaussian fields and harmonic functions
    • Zhu, X., Ghahramani, Z., Lafferty, J.: Semi-supervised learning using gaussian fields and harmonic functions. In: ICML, pp. 912-919 (2003)
    • (2003) ICML , pp. 912-919
    • Zhu, X.1    Ghahramani, Z.2    Lafferty, J.3
  • 33
    • 35348895580 scopus 로고    scopus 로고
    • Semi-supervised self-training of object detection models
    • Rosenberg, C., Hebert, M., Schneidermann, H.: Semi-supervised self-training of object detection models. In: WACV (2005)
    • (2005) WACV
    • Rosenberg, C.1    Hebert, M.2    Schneidermann, H.3
  • 34
    • 0031620208 scopus 로고    scopus 로고
    • Combining labeled and unlabeled data with co-training
    • Blum, A., Mitchel, T.: Combining labeled and unlabeled data with co-training. In: WCLT, pp. 92-100 (1998)
    • (1998) WCLT , pp. 92-100
    • Blum, A.1    Mitchel, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.