-
1
-
-
0019563894
-
Computing Dirichlet tesselations
-
A. Bowyer, Computing Dirichlet tesselations, Comput. J., 24 (1981), pp. 162-166.
-
(1981)
Comput. J.
, vol.24
, pp. 162-166
-
-
Bowyer, A.1
-
3
-
-
35248854084
-
Generalized Delaunay mesh refinement: From scalar to parallel
-
P. P. Pébay, ed., Springer, Berlin
-
A. N. Chernikov and N. P. Chrisochoides, Generalized Delaunay mesh refinement: From scalar to parallel, in Proceedings of the 15th International Meshing Roundtable, P. P. Pébay, ed., Springer, Berlin, 2006, pp. 563-580.
-
(2006)
Proceedings of the 15th International Meshing Roundtable
, pp. 563-580
-
-
Chernikov, A.N.1
Chrisochoides, N.P.2
-
4
-
-
57349143076
-
Three-dimensional semi-generalized point placement method for Delaunay mesh refinement
-
M. L. Brewer, D. Marcum, eds., Springer, Berlin
-
A. N. Chernikov and N. P. Chrisochoides, Three-dimensional semi-generalized point placement method for Delaunay mesh refinement, in Proceedings of the 16th International Meshing Roundtable, M. L. Brewer, D. Marcum, eds., Springer, Berlin, 2008, pp. 25-44.
-
(2008)
Proceedings of the 16th International Meshing Roundtable
, pp. 25-44
-
-
Chernikov, A.N.1
Chrisochoides, N.P.2
-
5
-
-
57349155016
-
Three-dimensional Delaunay refinement for multi-core processors
-
ACM, New York
-
A. N. Chernikov and N. P. Chrisochoides, Three-dimensional Delaunay refinement for multi-core processors, in Proceedings of the 22nd Annual International Conference on Supercomputing, ACM, New York, 2008, pp. 205-213.
-
(2008)
Proceedings of the 22nd Annual International Conference on Supercomputing
, pp. 205-213
-
-
Chernikov, A.N.1
Chrisochoides, N.P.2
-
6
-
-
78149319525
-
Generalized two-dimensional Delaunay mesh refinement
-
A. N. Chernikov and N. P. Chrisochoides, Generalized two-dimensional Delaunay mesh refinement, SIAM J. Sci. Comput., 31 (2009), pp. 3387-3403.
-
(2009)
SIAM J. Sci. Comput.
, vol.31
, pp. 3387-3403
-
-
Chernikov, A.N.1
Chrisochoides, N.P.2
-
7
-
-
0004174607
-
-
Technical report TR89983, Computer Science Department, Cornell University, Ithaca, NY
-
L. P. Chew, Guaranteed-quality triangular meshes, Technical report TR89983, Computer Science Department, Cornell University, Ithaca, NY, 1989.
-
(1989)
Guaranteed-Quality Triangular Meshes
-
-
Chew, L.P.1
-
10
-
-
85122616565
-
Triangulations with locally optimal Steiner points
-
Eurographics Association, Aire-la-Ville, Switzerland
-
H. Erten and A. Üngör, Triangulations with locally optimal Steiner points, in Proceedings of the Fifth Eurographics Symposium on Geometry Processing, Eurographics Association, Aire-la-Ville, Switzerland, 2007, pp. 143-152.
-
(2007)
Proceedings of the Fifth Eurographics Symposium on Geometry Processing
, pp. 143-152
-
-
Erten, H.1
Üngör, A.2
-
11
-
-
78149291873
-
-
Preprint ANL/MCS-P722-0598, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL
-
L. A. Freitag and C. Ollivier-Gooch, A Cost/Benefit Analysis of Simplicial Mesh Improvement Techniques as Measured by Solution Efficiency, Preprint ANL/MCS-P722-0598, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, 2000.
-
(2000)
A Cost/Benefit Analysis of Simplicial Mesh Improvement Techniques as Measured by Solution Efficiency
-
-
Freitag, L.A.1
Ollivier-Gooch, C.2
-
13
-
-
78149329915
-
Safe Steiner points for Delaunay refinement
-
Sandia National Laboratories, Livermore, CA
-
B. Hudson, Safe Steiner points for Delaunay refinement, in 17th International Meshing Roundtable Research Notes, Sandia National Laboratories, Livermore, CA, 2008.
-
(2008)
17th International Meshing Roundtable Research Notes
-
-
Hudson, B.1
-
14
-
-
0037265203
-
Generating well-shaped d-dimensional Delaunay meshes
-
X.-Y. Li, Generating well-shaped d-dimensional Delaunay meshes, Theoret. Comput. Sci., 296 (2003), pp. 145-165.
-
(2003)
Theoret. Comput. Sci.
, vol.296
, pp. 145-165
-
-
Li, X.-Y.1
-
16
-
-
33244462887
-
When and why Ruppert's algorithm works
-
Sandia National Laboratories, Livermore, CA
-
G. L. Miller, S. E. Pav, and N. Walkington, When and why Ruppert's algorithm works, in Proceedings of the 12th International Meshing Roundtable, Sandia National Laboratories, Livermore, CA, 2003, pp. 91-102.
-
(2003)
Proceedings of the 12th International Meshing Roundtable
, pp. 91-102
-
-
Miller, G.L.1
Pav, S.E.2
Walkington, N.3
-
17
-
-
0000349754
-
A Delaunay based numerical method for three dimensions: Generation, formulation, and partition
-
ACM, New York
-
G. L. Miller, D. Talmor, S.-H. Teng, and N. Walkington, A Delaunay based numerical method for three dimensions: Generation, formulation, and partition, in Proceedings of the 27th Annual ACM Symposium on Theory of Computing, ACM, New York, 1995, pp. 683-692.
-
(1995)
Proceedings of the 27th Annual ACM Symposium on Theory of Computing
, pp. 683-692
-
-
Miller, G.L.1
Talmor, D.2
Teng, S.-H.3
Walkington, N.4
-
18
-
-
33750726614
-
A Delaunay refinement algorithm for quality 2-dimensional mesh generation
-
J. Ruppert, A Delaunay refinement algorithm for quality 2-dimensional mesh generation, J. Algorithms, 18 (1995), pp. 548-585.
-
(1995)
J. Algorithms
, vol.18
, pp. 548-585
-
-
Ruppert, J.1
-
19
-
-
0038691302
-
Constrained Delaunay tetrahedralizations and provably good boundary recovery
-
Sandia National Laboratories, Livermore, CA
-
J. R. Shewchuk, Constrained Delaunay tetrahedralizations and provably good boundary recovery, in Proceedings of the 11th International Meshing Roundtable, Sandia National Laboratories, Livermore, CA, 2002, pp. 193-204.
-
(2002)
Proceedings of the 11th International Meshing Roundtable
, pp. 193-204
-
-
Shewchuk, J.R.1
-
20
-
-
31244438495
-
Delaunay refinement algorithms for triangular mesh generation
-
J. R. Shewchuk, Delaunay refinement algorithms for triangular mesh generation, Comput. Geom., 22 (2002), pp. 21-74.
-
(2002)
Comput. Geom.
, vol.22
, pp. 21-74
-
-
Shewchuk, J.R.1
-
21
-
-
0038014823
-
What is a good linear element?-Interpolation, conditioning, and quality Measures
-
Sandia National Laboratories, Livermore, CA
-
J. R. Shewchuk, What is a good linear element?-Interpolation, conditioning, and quality Measures, in Proceedings of the 11th International Meshing Roundtable, Sandia National Laboratories, Livermore, CA, 2002, pp. 115-126.
-
(2002)
Proceedings of the 11th International Meshing Roundtable
, pp. 115-126
-
-
Shewchuk, J.R.1
-
22
-
-
35048852526
-
Off-centers: A new type of Steiner points for computing size-optimal guaranteedquality Delaunay triangulations
-
Elsevier B.V., Amsterdam, The Netherlands
-
A. Üngör, Off-centers: A new type of Steiner points for computing size-optimal guaranteedquality Delaunay triangulations, in Proceedings of LATIN, Elsevier B.V., Amsterdam, The Netherlands, 2004, pp. 152-161.
-
(2004)
Proceedings of LATIN
, pp. 152-161
-
-
Üngör, A.1
-
24
-
-
0019563697
-
Computing the n-dimensional Delaunay tesselation with application to Voronoi polytopes
-
D. F. Watson, Computing the n-dimensional Delaunay tesselation with application to Voronoi polytopes, Comput. J., 24 (1981), pp. 167-172.
-
(1981)
Comput. J.
, vol.24
, pp. 167-172
-
-
Watson, D.F.1
|