-
3
-
-
0001134065
-
-
10.1103/PhysRevLett.37.602
-
P. Monçeau, N. P. Ong, A. M. Portis, A. Meerschaut, and J. Rouxel, Phys. Rev. Lett. 37, 602 (1976). 10.1103/PhysRevLett.37.602
-
(1976)
Phys. Rev. Lett.
, vol.37
, pp. 602
-
-
Monçeau, P.1
Ong, N.P.2
Portis, A.M.3
Meerschaut, A.4
Rouxel, J.5
-
5
-
-
67650457559
-
-
10.1103/PhysRevLett.102.166402
-
S. V. Borisenko, A. A. Kordyuk, V. B. Zabolotnyy, D. S. Inosov, D. Evtushinsky, B. Büchner, A. N. Yaresko, A. Varykhalov, R. Follath, W. Eberhardt, L. Patthey, and H. Berger, Phys. Rev. Lett. 102, 166402 (2009). 10.1103/PhysRevLett.102.166402
-
(2009)
Phys. Rev. Lett.
, vol.102
, pp. 166402
-
-
Borisenko, S.V.1
Kordyuk, A.A.2
Zabolotnyy, V.B.3
Inosov, D.S.4
Evtushinsky, D.5
Büchner, B.6
Yaresko, A.N.7
Varykhalov, A.8
Follath, R.9
Eberhardt, W.10
Patthey, L.11
Berger, H.12
-
7
-
-
0001093451
-
-
10.1103/PhysRevLett.86.4382
-
A. H. Castro Neto, Phys. Rev. Lett. 86, 4382 (2001). 10.1103/PhysRevLett. 86.4382
-
(2001)
Phys. Rev. Lett.
, vol.86
, pp. 4382
-
-
Castro Neto, A.H.1
-
8
-
-
43049105742
-
-
10.1103/PhysRevB.77.165135
-
M. D. Johannes and I. I. Mazin, Phys. Rev. B 77, 165135 (2008). 10.1103/PhysRevB.77.165135
-
(2008)
Phys. Rev. B
, vol.77
, pp. 165135
-
-
Johannes, M.D.1
Mazin, I.I.2
-
10
-
-
19744382113
-
-
10.1103/PhysRevLett.93.176602
-
E. Slot, M. A. Holst, H. S. J. van der Zant, and S. V. Zaitsev-Zotov, Phys. Rev. Lett. 93, 176602 (2004). 10.1103/PhysRevLett.93.176602
-
(2004)
Phys. Rev. Lett.
, vol.93
, pp. 176602
-
-
Slot, E.1
Holst, M.A.2
Van Der Zant, H.S.J.3
Zaitsev-Zotov, S.V.4
-
12
-
-
4243179493
-
-
10.1103/PhysRevLett.28.299;
-
R. F. Frindt, Phys. Rev. Lett. 28, 299 (1972) 10.1103/PhysRevLett.28.299
-
(1972)
Phys. Rev. Lett.
, vol.28
, pp. 299
-
-
Frindt, R.F.1
-
13
-
-
23044442056
-
-
10.1073/pnas.0502848102;
-
K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, Proc. Natl. Acad. Sci. U.S.A. 102, 10451 (2005) 10.1073/pnas.0502848102
-
(2005)
Proc. Natl. Acad. Sci. U.S.A.
, vol.102
, pp. 10451
-
-
Novoselov, K.S.1
Jiang, D.2
Schedin, F.3
Booth, T.J.4
Khotkevich, V.V.5
Morozov, S.V.6
Geim, A.K.7
-
14
-
-
73349106505
-
-
10.1103/PhysRevB.80.184505
-
N. E. Staley, J. Wu, P. Eklund, Y. Liu, L. Li, and Z. Xu, Phys. Rev. B 80, 184505 (2009). 10.1103/PhysRevB.80.184505
-
(2009)
Phys. Rev. B
, vol.80
, pp. 184505
-
-
Staley, N.E.1
Wu, J.2
Eklund, P.3
Liu, Y.4
Li, L.5
Xu, Z.6
-
15
-
-
4644252328
-
-
10.1038/nature02905;
-
V. Sazonova, Y. Yaish, H. Ustunel, D. Roundy, T. A. Arias, and P. L. McEuen, Nature (London) 431, 284 (2004) 10.1038/nature02905
-
(2004)
Nature (London)
, vol.431
, pp. 284
-
-
Sazonova, V.1
Yaish, Y.2
Ustunel, H.3
Roundy, D.4
Arias, T.A.5
McEuen, P.L.6
-
16
-
-
69549124308
-
-
10.1126/science.1176076;
-
G. A. Steele, A. K. Huttel, B. Witkamp, M. Poot, H. B. Meerwaldt, L. P. Kouwenhoven, and H. S. J. van der Zant, Science 325, 1103 (2009) 10.1126/science.1176076
-
(2009)
Science
, vol.325
, pp. 1103
-
-
Steele, G.A.1
Huttel, A.K.2
Witkamp, B.3
Poot, M.4
Meerwaldt, H.B.5
Kouwenhoven, L.P.6
Van Der Zant, H.S.J.7
-
17
-
-
69549120249
-
-
10.1126/science.1174290
-
B. Lassagne, Y. Tarakanov, J. Kinaret, D. Garcia-Sanchez, and A. Bachtold, Science 325, 1107 (2009). 10.1126/science.1174290
-
(2009)
Science
, vol.325
, pp. 1107
-
-
Lassagne, B.1
Tarakanov, Y.2
Kinaret, J.3
Garcia-Sanchez, D.4
Bachtold, A.5
-
18
-
-
34547585788
-
-
10.1021/nl0706695
-
X. L. Feng, R. He, P. Yang, and M. L. Roukes, Nano Lett. 7, 1953 (2007). 10.1021/nl0706695
-
(2007)
Nano Lett.
, vol.7
, pp. 1953
-
-
Feng, X.L.1
He, R.2
Yang, P.3
Roukes, M.L.4
-
19
-
-
77950490382
-
-
10.1103/PhysRevB.81.115459
-
H. S. Solanki, S. Sengupta, S. Dhara, V. Singh, S. Patil, R. Dhall, J. Parpia, A. Bhattacharya, and M. M. Deshmukh, Phys. Rev. B 81, 115459 (2010). 10.1103/PhysRevB.81.115459
-
(2010)
Phys. Rev. B
, vol.81
, pp. 115459
-
-
Solanki, H.S.1
Sengupta, S.2
Dhara, S.3
Singh, V.4
Patil, S.5
Dhall, R.6
Parpia, J.7
Bhattacharya, A.8
Deshmukh, M.M.9
-
20
-
-
33846627756
-
-
10.1126/science.1136836;
-
J. S. Bunch, A. M. van der Zande, S. S. Verbridge, I. W. Frank, D. M. Tanenbaum, J. M. Parpia, H. G. Craighead, and P. L. McEuen, Science 315, 490 (2007) 10.1126/science.1136836
-
(2007)
Science
, vol.315
, pp. 490
-
-
Bunch, J.S.1
Van Der Zande, A.M.2
Verbridge, S.S.3
Frank, I.W.4
Tanenbaum, D.M.5
Parpia, J.M.6
Craighead, H.G.7
McEuen, P.L.8
-
21
-
-
72549119847
-
-
10.1038/nnano.2009.267;
-
C. Chen, S. Rosenblatt, K. I. Bolotin, W. Kalb, P. Kim, I. Kymissis, H. L. Stormer, T. F. Heinz, and J. Hone, Nat. Nanotechnol. 4, 861 (2009) 10.1038/nnano.2009.267
-
(2009)
Nat. Nanotechnol.
, vol.4
, pp. 861
-
-
Chen, C.1
Rosenblatt, S.2
Bolotin, K.I.3
Kalb, W.4
Kim, P.5
Kymissis, I.6
Stormer, H.L.7
Heinz, T.F.8
Hone, J.9
-
22
-
-
77950464468
-
-
10.1088/0957-4484/21/16/165204
-
V. Singh, S. Sengupta, H. S. Solanki, R. Dhall, A. Allain, S. Dhara, P. Pant, and M. M. Deshmukh, Nanotechnology 21, 165204 (2010). 10.1088/0957-4484/ 21/16/165204
-
(2010)
Nanotechnology
, vol.21
, pp. 165204
-
-
Singh, V.1
Sengupta, S.2
Solanki, H.S.3
Dhall, R.4
Allain, A.5
Dhara, S.6
Pant, P.7
Deshmukh, M.M.8
-
23
-
-
78149270855
-
-
The amplitude of driving force experienced by the resonator is d Cg dz Vg dc Vg ac, where Cg is the gate capacitance.
-
The amplitude of driving force experienced by the resonator is d C g d z V g dc V g ac, where C g is the gate capacitance.
-
-
-
-
24
-
-
78149254298
-
-
Ph.D. thesis, Cornell University
-
V. Sazonova, Ph.D. thesis, Cornell University, 2006.
-
(2006)
-
-
Sazonova, V.1
-
26
-
-
78149236032
-
-
) 2 + Cg Vg ac } Vsd, where Cg is the gate capacitance. ξ f0 is the amplitude of vibration at resonant frequency f0 and Q is the quality factor. Δ is an arbitrary phase factor and its origin is discussed in Refs.. Vg ac, Vsd ∼10-100 mV.
-
) 2 + C g V g ac } V s d, where C g is the gate capacitance. ξ f 0 is the amplitude of vibration at resonant frequency f 0 and Q is the quality factor. Δ is an arbitrary phase factor and its origin is discussed in Refs.. V g ac, V s d ∼ 10 - 100 mV.
-
-
-
-
27
-
-
0001026047
-
-
However, quasi-one-dimensional NbSe3 shows significant gating, see, 10.1103/PhysRevLett.74.5264
-
However, quasi-one-dimensional NbSe 3 shows significant gating, see T. L. Adelman, S. V. Zaitsev-Zotov, and R. E. Thorne, Phys. Rev. Lett. 74, 5264 (1995). 10.1103/PhysRevLett.74.5264
-
(1995)
Phys. Rev. Lett.
, vol.74
, pp. 5264
-
-
Adelman, T.L.1
Zaitsev-Zotov, S.V.2
Thorne, R.E.3
-
28
-
-
0242675856
-
-
10.1103/PhysRevB.67.235414
-
S. Sapmaz, Y. M. Blanter, L. Gurevich, and H. S. J. van der Zant, Phys. Rev. B 67, 235414 (2003). 10.1103/PhysRevB.67.235414
-
(2003)
Phys. Rev. B
, vol.67
, pp. 235414
-
-
Sapmaz, S.1
Blanter, Y.M.2
Gurevich, L.3
Van Der Zant, H.S.J.4
-
29
-
-
78149254297
-
-
) 2. α depends upon the device geometry but not on E.
-
) 2. α depends upon the device geometry but not on E.
-
-
-
-
30
-
-
33745468031
-
-
10.1063/1.2209211;
-
I. Kozinsky, H. W. Postma, I. Bargatin, and M. L. Roukes, Appl. Phys. Lett. 88, 253101 (2006) 10.1063/1.2209211
-
(2006)
Appl. Phys. Lett.
, vol.88
, pp. 253101
-
-
Kozinsky, I.1
Postma, H.W.2
Bargatin, I.3
Roukes, M.L.4
-
32
-
-
78149231641
-
-
2 (Ref.) have positive thermal-expansion coefficients. On heating from 28 to 40 K, they will expand, and the strain ε will reduce. If any correction due to thermal expansion is incorporated, then the estimate of change in E will be even greater than 10%.
-
Cr, Au, and NbSe 2 (Ref.) have positive thermal-expansion coefficients. On heating from 28 to 40 K, they will expand, and the strain ε will reduce. If any correction due to thermal expansion is incorporated, then the estimate of change in E will be even greater than 10%.
-
-
-
-
35
-
-
0001298999
-
-
10.1103/PhysRevB.12.1187
-
W. L. McMillan, Phys. Rev. B 12, 1187 (1975). 10.1103/PhysRevB.12.1187
-
(1975)
Phys. Rev. B
, vol.12
, pp. 1187
-
-
McMillan, W.L.1
-
36
-
-
78149249689
-
-
See supplementary material at http://link.aps.org/supplemental/10.1103/ PhysRevB.82.155432 for resistance data on suspended devices and the variation in resonant frequency at temperatures much higher than the CDW transition.
-
-
-
-
41
-
-
78149276079
-
-
Plot of dG dq versus temperature for Device 1 [corresponding to Fig. ] is provided in Ref.. The reduction in dG dq with increase in temperature across the CDW transition is evident in this device also. However, the abruptness of the phase transition is not as clear in this data as in Fig. (for Device 2). From the appearance of the plot, if we assume that the phase transition is occurring around 27.2 K, then, a power-law fit gives a critical exponent of 0.57±0.21.
-
Plot of d G d q versus temperature for Device 1 [corresponding to Fig.] is provided in Ref.. The reduction in d G d q with increase in temperature across the CDW transition is evident in this device also. However, the abruptness of the phase transition is not as clear in this data as in Fig. (for Device 2). From the appearance of the plot, if we assume that the phase transition is occurring around 27.2 K, then, a power-law fit gives a critical exponent of 0.57 ± 0.21.
-
-
-
-
42
-
-
0001231360
-
-
10.1080/00018737300101379
-
W. Rehwald, Adv. Phys. 22, 721 (1973). 10.1080/00018737300101379
-
(1973)
Adv. Phys.
, vol.22
, pp. 721
-
-
Rehwald, W.1
-
44
-
-
0009909040
-
-
10.1103/PhysRevB.28.2855
-
H. Mutka, Phys. Rev. B 28, 2855 (1983). 10.1103/PhysRevB.28.2855
-
(1983)
Phys. Rev. B
, vol.28
, pp. 2855
-
-
Mutka, H.1
|