-
1
-
-
0034896596
-
-
10.1103/PhysRevB.63.104404
-
K. Ikushima, S. Tsutsui, Y. Haga, H. Yasuoka, R. E. Walstedt, N. M. Masaki, A. Nakamura, S. Nasu, and Y. Onuki, Phys. Rev. B 63, 104404 (2001). 10.1103/PhysRevB.63.104404
-
(2001)
Phys. Rev. B
, vol.63
, pp. 104404
-
-
Ikushima, K.1
Tsutsui, S.2
Haga, Y.3
Yasuoka, H.4
Walstedt, R.E.5
Masaki, N.M.6
Nakamura, A.7
Nasu, S.8
Onuki, Y.9
-
2
-
-
18144414674
-
-
10.1103/PhysRevLett.94.137209
-
Y. Tokunaga, Y. Homma, S. Kambe, D. Aoki, H. Sakai, E. Yamamoto, A. Nakamura, Y. Shiokawa, R. E. Walstedt, and H. Yasuoka, Phys. Rev. Lett. 94, 137209 (2005). 10.1103/PhysRevLett.94.137209
-
(2005)
Phys. Rev. Lett.
, vol.94
, pp. 137209
-
-
Tokunaga, Y.1
Homma, Y.2
Kambe, S.3
Aoki, D.4
Sakai, H.5
Yamamoto, E.6
Nakamura, A.7
Shiokawa, Y.8
Walstedt, R.E.9
Yasuoka, H.10
-
4
-
-
34250817103
-
-
10.1063/1.464304
-
A. D. Becke, J. Chem. Phys. 98, 1372 (1993). 10.1063/1.464304
-
(1993)
J. Chem. Phys.
, vol.98
, pp. 1372
-
-
Becke, A.D.1
-
5
-
-
77954720435
-
-
See, e.g., 10.1103/PhysRevB.80.235109;
-
See, e.g., F. Jollet, G. Jomard, B. Amadon, J. P. Crocombette, and D. Torumba, Phys. Rev. B 80, 235109 (2009) 10.1103/PhysRevB.80.235109
-
(2009)
Phys. Rev. B
, vol.80
, pp. 235109
-
-
Jollet, F.1
Jomard, G.2
Amadon, B.3
Crocombette, J.P.4
Torumba, D.5
-
6
-
-
50949117535
-
-
10.1103/PhysRevB.78.075125;
-
G. Jomard, B. Amadon, F. Bottin, and M. Torrent, Phys. Rev. B 78, 075125 (2008) 10.1103/PhysRevB.78.075125
-
(2008)
Phys. Rev. B
, vol.78
, pp. 075125
-
-
Jomard, G.1
Amadon, B.2
Bottin, F.3
Torrent, M.4
-
7
-
-
33244486971
-
-
10.1103/PhysRevB.73.045104, see also references therein.
-
I. D. Prodan, G. E. Scuseria, and R. L. Martin, Phys. Rev. B 73, 045104 (2006) 10.1103/PhysRevB.73.045104
-
(2006)
Phys. Rev. B
, vol.73
, pp. 045104
-
-
Prodan, I.D.1
Scuseria, G.E.2
Martin, R.L.3
-
8
-
-
0041843795
-
-
10.1126/science.1086505
-
L. Petit, A. Svane, Z. Szotek, and W. M. Temmerman, Science 301, 498 (2003). 10.1126/science.1086505
-
(2003)
Science
, vol.301
, pp. 498
-
-
Petit, L.1
Svane, A.2
Szotek, Z.3
Temmerman, W.M.4
-
9
-
-
44949108153
-
-
10.1103/PhysRevLett.100.225504
-
Q. Yin and S. Y. Savrasov, Phys. Rev. Lett. 100, 225504 (2008). 10.1103/PhysRevLett.100.225504
-
(2008)
Phys. Rev. Lett.
, vol.100
, pp. 225504
-
-
Yin, Q.1
Savrasov, S.Y.2
-
10
-
-
78149264084
-
-
(private communication).
-
M. Suzuki (private communication).
-
-
-
Suzuki, M.1
-
11
-
-
12844286241
-
-
10.1103/PhysRevB.47.558;
-
G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993) 10.1103/PhysRevB.47. 558
-
(1993)
Phys. Rev. B
, vol.47
, pp. 558
-
-
Kresse, G.1
Hafner, J.2
-
14
-
-
25744460922
-
-
10.1103/PhysRevB.50.17953;
-
P. E. Blöchl, Phys. Rev. B 50, 17953 (1994) 10.1103/PhysRevB.50. 17953
-
(1994)
Phys. Rev. B
, vol.50
, pp. 17953
-
-
Blöchl, P.E.1
-
15
-
-
0011236321
-
-
10.1103/PhysRevB.59.1758
-
G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999). 10.1103/PhysRevB.59.1758
-
(1999)
Phys. Rev. B
, vol.59
, pp. 1758
-
-
Kresse, G.1
Joubert, D.2
-
16
-
-
84862772017
-
-
We used the "standard" PAW potentials provided with VASP. In these potentials, the numbers of the valence electrons are 6 and 16 for O and Pu, respectively. The cut-off radii become 1.52 a.u. and 1.8 a.u. for O and Pu, respectively.
-
We used the "standard" PAW potentials provided with VASP. In these potentials, the numbers of the valence electrons are 6 and 16 for O and Pu, respectively. The cut-off radii become 1.52 a.u. and 1.8 a.u. for O and Pu, respectively.
-
-
-
-
19
-
-
84862754293
-
-
In this setting, the number of plane-waves reached ∼22,000.
-
In this setting, the number of plane-waves reached ∼ 22, 000.
-
-
-
-
20
-
-
84862754292
-
-
We have compared the force convergence of cutoff energy 500 eV and 9×9×9 k points with that of cutoff energy 700 eV and 11×11×11 k points, and their difference is less than 0.01 eV/A. Thus, the cutoff energy 500 eV and 9×9×9 k points give enough accuracy as long as the force convergence is less than 0.01 eV/A.
-
We have compared the force convergence of cutoff energy 500 eV and 9 × 9 × 9 k points with that of cutoff energy 700 eV and 11 × 11 × 11 k points, and their difference is less than 0.01 eV/A. Thus, the cutoff energy 500 eV and 9 × 9 × 9 k points give enough accuracy as long as the force convergence is less than 0.01 eV/A.
-
-
-
-
21
-
-
0001164249
-
-
10.1103/PhysRevB.39.1708
-
O. Gunnarsson, O. K. Andersen, O. Jepsen, and J. Zaanen, Phys. Rev. B 39, 1708 (1989). 10.1103/PhysRevB.39.1708
-
(1989)
Phys. Rev. B
, vol.39
, pp. 1708
-
-
Gunnarsson, O.1
Andersen, O.K.2
Jepsen, O.3
Zaanen, J.4
-
22
-
-
12344253719
-
-
10.1103/PhysRevB.70.195104
-
F. Aryasetiawan, M. Imada, A. Georges, G. Kotliar, S. Biermann, and A. I. Lichtenstein, Phys. Rev. B 70, 195104 (2004). 10.1103/PhysRevB.70.195104
-
(2004)
Phys. Rev. B
, vol.70
, pp. 195104
-
-
Aryasetiawan, F.1
Imada, M.2
Georges, A.3
Kotliar, G.4
Biermann, S.5
Lichtenstein, A.I.6
-
24
-
-
78149237396
-
-
in 3rd ed., edited by L. R. Morss, N. M. Edelstein, J. Fuger, and J. J. Katz (Springer, New York
-
D. L. Clark, S. S. Hecker, G. D. Jarvinen, and M. P. Neu, in The Chemistry of the Actinide and Transactinide Elements, 3rd ed., edited by, L. R. Morss, N. M. Edelstein, J. Fuger, and, J. J. Katz, (Springer, New York, 2008), Vol. 2, Chap., p. 1027.
-
(2008)
The Chemistry of the Actinide and Transactinide Elements
, vol.2
, pp. 1027
-
-
Clark, D.L.1
Hecker, S.S.2
Jarvinen, G.D.3
Neu, M.P.4
-
25
-
-
0004790291
-
-
10.1016/0022-3115(64)90120-5
-
C. E. McNeilly, J. Nucl. Mater. 11, 53 (1964). 10.1016/0022-3115(64) 90120-5
-
(1964)
J. Nucl. Mater.
, vol.11
, pp. 53
-
-
McNeilly, C.E.1
-
26
-
-
33846454331
-
-
10.1103/PhysRevB.75.045121
-
J. L. F. Da Silva, M. V. Ganduglia-Pirovano, J. Sauer, V. Bayer, and G. Kresse, Phys. Rev. B 75, 045121 (2007). 10.1103/PhysRevB.75.045121
-
(2007)
Phys. Rev. B
, vol.75
, pp. 045121
-
-
Da Silva, J.L.F.1
Ganduglia-Pirovano, M.V.2
Sauer, J.3
Bayer, V.4
Kresse, G.5
-
29
-
-
36149027186
-
-
10.1103/PhysRev.71.809
-
F. Birch, Phys. Rev. 71, 809 (1947). 10.1103/PhysRev.71.809
-
(1947)
Phys. Rev.
, vol.71
, pp. 809
-
-
Birch, F.1
-
30
-
-
0027110322
-
-
10.1016/0925-8388(92)90292-H
-
U. Benedict, S. Dabos-Seignon, J. P. Dancausse, M. Gensini, G. Gering, S. Heathman, H. Luo, J. Staun Olsen, L. Gerward, and R. G. Haire, J. Alloys Compd. 181, 1 (1992). 10.1016/0925-8388(92)90292-H
-
(1992)
J. Alloys Compd.
, vol.181
, pp. 1
-
-
Benedict, U.1
Dabos-Seignon, S.2
Dancausse, J.P.3
Gensini, M.4
Gering, G.5
Heathman, S.6
Luo, H.7
Staun Olsen, J.8
Gerward, L.9
Haire, R.G.10
-
31
-
-
37649026777
-
-
10.1103/PhysRevB.70.014113
-
M. Idiri, T. Le Bihan, S. Heathman, and J. Rebizant, Phys. Rev. B 70, 014113 (2004). 10.1103/PhysRevB.70.014113
-
(2004)
Phys. Rev. B
, vol.70
, pp. 014113
-
-
Idiri, M.1
Le Bihan, T.2
Heathman, S.3
Rebizant, J.4
-
32
-
-
0036500819
-
-
10.1103/PhysRevB.65.104104
-
Y. Le Page and P. Saxe, Phys. Rev. B 65, 104104 (2002). 10.1103/PhysRevB.65.104104
-
(2002)
Phys. Rev. B
, vol.65
, pp. 104104
-
-
Le Page, Y.1
Saxe, P.2
-
33
-
-
78149261648
-
-
1.5% strain is adopted to calculate the elastic constants
-
-1.5% strain is adopted to calculate the elastic constants.
-
-
-
-
34
-
-
84862769481
-
-
We estimate the standard error by the least-square method for the results of ±0.5% and ±1.0% strains. The obtained bulk modulus is 230.66±2.87 GPa, which agrees with that of Birch-Murnaghan fitting and that of 1.5% strain.
-
We estimate the standard error by the least-square method for the results of ± 0.5 % and ± 1.0 % strains. The obtained bulk modulus is 230.66 ± 2.87 GPa, which agrees with that of Birch-Murnaghan fitting and that of 1.5% strain.
-
-
-
-
35
-
-
84862761233
-
-
F. Zhou and V. Ozoliņš, arXiv:1006.3988 (unpublished)
-
F. Zhou and V. Ozoliņš, arXiv:1006.3988 (unpublished).
-
-
-
|