메뉴 건너뛰기




Volumn 32, Issue 2, 2011, Pages 153-158

Object recognition using proportion-based prior information: Application to fisheries acoustics

Author keywords

Discriminative classification model; Generative classification model; Weakly supervised learning

Indexed keywords

CLASSIFICATION METHODS; CLASSIFICATION MODELS; DATA SETS; DISCRIMINATIVE MODELS; FISHERIES ACOUSTICS; LEARNING METHODS; MODEL LEARNING; NON-LINEAR; NONLINEAR VERSIONS; OBJECT CLASS; PRESENCE/ABSENCE; PRIOR INFORMATION; PROBABILISTIC CLASSIFICATION MODELS; TRAINING DATA SETS; WEAKLY SUPERVISED LEARNING;

EID: 78049493031     PISSN: 01678655     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patrec.2010.10.001     Document Type: Article
Times cited : (6)

References (23)
  • 1
    • 46249104565 scopus 로고    scopus 로고
    • Acoustic seabed classification: Current practice and future directions
    • J. Anderson, D. Holliday, R. Kloser, D. Reid, and Y. Simard Acoustic seabed classification: current practice and future directions ICES J. Marine Sci. 65 6 2008 1004 1011
    • (2008) ICES J. Marine Sci. , vol.65 , Issue.6 , pp. 1004-1011
    • Anderson, J.1    Holliday, D.2    Kloser, R.3    Reid, D.4    Simard, Y.5
  • 3
    • 0002215069 scopus 로고
    • On a measure of divergence between two statistical populations defined by probability distributions
    • A. Bhattacharyya On a measure of divergence between two statistical populations defined by probability distributions Bull. Calcutta Math. Soc. 35 1943 99 109
    • (1943) Bull. Calcutta Math. Soc. , vol.35 , pp. 99-109
    • Bhattacharyya, A.1
  • 8
    • 34948861144 scopus 로고    scopus 로고
    • Weakly supervised learning of part-based spatial models for visual object recognition
    • Crandall, D; Huttenlocher, D; 2006. Weakly supervised learning of part-based spatial models for visual object recognition. In: European Conf. on Computer Vision.
    • (2006) European Conf. on Computer Vision
    • Crandall, D.1    Huttenlocher, D.2
  • 9
    • 0002629270 scopus 로고
    • Likelihood from incomplete data via the em algorithm
    • A. Dempster, N. Laird, and D. Rubin Likelihood from incomplete data via the em algorithm J. Roy. Statist. Soc. Ser. B 39 1 1977 1 38
    • (1977) J. Roy. Statist. Soc. Ser. B , vol.39 , Issue.1 , pp. 1-38
    • Dempster, A.1    Laird, N.2    Rubin, D.3
  • 10
    • 33646129679 scopus 로고    scopus 로고
    • Object-based method for automatic forest change detection
    • B. Desclée, P. Bogaert, and P. Defourny Object-based method for automatic forest change detection Remote Sens. Environ. 102 2006 1 11
    • (2006) Remote Sens. Environ. , vol.102 , pp. 1-11
    • Desclée, B.1    Bogaert, P.2    Defourny, P.3
  • 11
    • 33750397657 scopus 로고    scopus 로고
    • Weakly supervised scale-invariant learning of models for visual recognition
    • R. Fergus, P. Perona, and A. Zissermen Weakly supervised scale-invariant learning of models for visual recognition Internat. J. Comput. Vision 71 3 2007 273 303
    • (2007) Internat. J. Comput. Vision , vol.71 , Issue.3 , pp. 273-303
    • Fergus, R.1    Perona, P.2    Zissermen, A.3
  • 12
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • R. Fisher The use of multiple measurements in taxonomic problems Ann. Eugenics 1936 179 188
    • (1936) Ann. Eugenics , pp. 179-188
    • Fisher, R.1
  • 13
    • 33745400518 scopus 로고    scopus 로고
    • Feature-based approach to semi-supervised similarity learning
    • P. Gosselin, and M. Cord Feature-based approach to semi-supervised similarity learning Pattern Recognition 39 2006 1839 1851
    • (2006) Pattern Recognition , vol.39 , pp. 1839-1851
    • Gosselin, P.1    Cord, M.2
  • 15
  • 17
    • 0027790049 scopus 로고
    • Acoustic detection of the spatial and temporal distribution of fish shoals in the bay of biscay
    • C. Scalabrin, and J. Massé Acoustic detection of the spatial and temporal distribution of fish shoals in the bay of biscay Aquat. Living Resour. 6 1993 269 283
    • (1993) Aquat. Living Resour. , vol.6 , pp. 269-283
    • Scalabrin, C.1    Massé, J.2
  • 23
    • 0035306657 scopus 로고    scopus 로고
    • Mutual information theory for adaptative mixture models
    • Z. Yang, and M. Zwolinski Mutual information theory for adaptative mixture models IEEE Trans. Pattern Anal. Machine Learn. 23 4 2001 396 403
    • (2001) IEEE Trans. Pattern Anal. Machine Learn. , vol.23 , Issue.4 , pp. 396-403
    • Yang, Z.1    Zwolinski, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.