-
2
-
-
3843146163
-
-
10.1103/PhysRevLett.35.744
-
J. W. Bray, H. R. Hart, Jr., L. V. Interrante, I. S. Jacobs, J. S. Kasper, G. D. Watkins, S. H. Wee, and J. C. Bonner, Phys. Rev. Lett. 35, 744 (1975). 10.1103/PhysRevLett.35.744
-
(1975)
Phys. Rev. Lett.
, vol.35
, pp. 744
-
-
Bray, J.W.1
Hart, Jr.H.R.2
Interrante, L.V.3
Jacobs, I.S.4
Kasper, J.S.5
Watkins, G.D.6
Wee, S.H.7
Bonner, J.C.8
-
4
-
-
0000591031
-
-
10.1103/PhysRevB.62.R747
-
A. Weiße, H. Fehske, G. Wellein, and A. R. Bishop, Phys. Rev. B 62, R747 (2000). 10.1103/PhysRevB.62.R747
-
(2000)
Phys. Rev. B
, vol.62
, pp. 747
-
-
Weiße, A.1
Fehske, H.2
Wellein, G.3
Bishop, A.R.4
-
13
-
-
36249024276
-
-
10.1103/PhysRevB.76.195115
-
H. Bakrim and C. Bourbonnais, Phys. Rev. B 76, 195115 (2007). 10.1103/PhysRevB.76.195115
-
(2007)
Phys. Rev. B
, vol.76
, pp. 195115
-
-
Bakrim, H.1
Bourbonnais, C.2
-
14
-
-
4243578127
-
-
10.1103/PhysRevB.27.1680
-
E. Fradkin and J. E. Hirsch, Phys. Rev. B 27, 1680 (1983). 10.1103/PhysRevB.27.1680
-
(1983)
Phys. Rev. B
, vol.27
, pp. 1680
-
-
Fradkin, E.1
Hirsch, J.E.2
-
17
-
-
27144444285
-
-
10.1103/PhysRevLett.95.137207
-
W. Barford and R. J. Bursill, Phys. Rev. Lett. 95, 137207 (2005). 10.1103/PhysRevLett.95.137207
-
(2005)
Phys. Rev. Lett.
, vol.95
, pp. 137207
-
-
Barford, W.1
Bursill, R.J.2
-
18
-
-
0004258361
-
-
See, for example, Wiley, New York
-
See, for example, C. Kittel, Quantum Theory of Solids (Wiley, New York, 1987), p. 25.
-
(1987)
Quantum Theory of Solids
, pp. 25
-
-
Kittel, C.1
-
19
-
-
3442895828
-
-
10.1103/PhysRevLett.69.2863;
-
S. R. White, Phys. Rev. Lett. 69, 2863 (1992) 10.1103/PhysRevLett.69.2863
-
(1992)
Phys. Rev. Lett.
, vol.69
, pp. 2863
-
-
White, S.R.1
-
20
-
-
20044389808
-
-
10.1103/PhysRevB.48.10345
-
S. R. White, Phys. Rev. B 48, 10345 (1993). 10.1103/PhysRevB.48.10345
-
(1993)
Phys. Rev. B
, vol.48
, pp. 10345
-
-
White, S.R.1
-
21
-
-
0000980809
-
-
10.1016/0375-9601(92)90823-5
-
K. Okamoto and K. Nomura, Phys. Lett. A 169, 433 (1992). 10.1016/0375-9601(92)90823-5
-
(1992)
Phys. Lett. A
, vol.169
, pp. 433
-
-
Okamoto, K.1
Nomura, K.2
-
23
-
-
0000553499
-
-
10.1088/0305-4470/14/1/024
-
C. J. Hamer and M. N. Barber, J. Phys. A 14, 241 (1981). 10.1088/0305-4470/14/1/024
-
(1981)
J. Phys. A
, vol.14
, pp. 241
-
-
Hamer, C.J.1
Barber, M.N.2
-
24
-
-
23744434632
-
-
10.1088/0022-3719/6/5/004
-
R. J. Baxter, J. Phys. C 6, L94 (1973). 10.1088/0022-3719/6/5/004
-
(1973)
J. Phys. C
, vol.6
, pp. 94
-
-
Baxter, R.J.1
-
25
-
-
33244460834
-
-
10.1103/PhysRevB.73.045106
-
W. Barford and R. J. Bursill, Phys. Rev. B 73, 045106 (2006). 10.1103/PhysRevB.73.045106
-
(2006)
Phys. Rev. B
, vol.73
, pp. 045106
-
-
Barford, W.1
Bursill, R.J.2
-
26
-
-
4243445702
-
-
10.1103/PhysRevA.53.2046
-
C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, Phys. Rev. A 53, 2046 (1996). 10.1103/PhysRevA.53.2046
-
(1996)
Phys. Rev. A
, vol.53
, pp. 2046
-
-
Bennett, C.H.1
Bernstein, H.J.2
Popescu, S.3
Schumacher, B.4
-
27
-
-
23844520141
-
-
10.1103/RevModPhys.77.259
-
U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005). 10.1103/RevModPhys. 77.259
-
(2005)
Rev. Mod. Phys.
, vol.77
, pp. 259
-
-
Schollwöck, U.1
-
29
-
-
28844483404
-
-
10.1103/PhysRevA.72.032309
-
L.-A. Wu, S. Bandyopadhyay, M. S. Sarandy, and D. A. Lidar, Phys. Rev. A 72, 032309 (2005). 10.1103/PhysRevA.72.032309
-
(2005)
Phys. Rev. A
, vol.72
, pp. 032309
-
-
Wu, L.-A.1
Bandyopadhyay, S.2
Sarandy, M.S.3
Lidar, D.A.4
-
30
-
-
36549074539
-
-
10.1103/PhysRevLett.99.220405
-
G. Vidal, Phys. Rev. Lett. 99, 220405 (2007). 10.1103/PhysRevLett.99. 220405
-
(2007)
Phys. Rev. Lett.
, vol.99
, pp. 220405
-
-
Vidal, G.1
-
31
-
-
78049467671
-
-
A good approximation to ρS (L) can be obtained by diagonalizing the Hamiltonian corresponding to the system block and only a few extra, neighboring/environment-block spins, e.g., DMRG
-
A good approximation to ρ S (L) can be obtained by diagonalizing the Hamiltonian corresponding to the system block and only a few extra, neighboring/environment-block spins, e.g., DMRG.
-
-
-
-
33
-
-
78049470420
-
-
Relative to the Einstein limit, the phase diagram for the Debye limit for physical parameters corresponds to stretching the y axis and contracting the x axis of Fig
-
Relative to the Einstein limit, the phase diagram for the Debye limit for physical parameters corresponds to stretching the y axis and contracting the x axis of Fig..
-
-
-
|