메뉴 건너뛰기




Volumn 10, Issue 22, 2010, Pages 2847-2854

Comparison of neural network and maximum likelihood approaches in image classification

Author keywords

ALPS AVNIR 2; Land cover; Makkah; Remote sensing; Supervised

Indexed keywords

IMAGE CLASSIFICATION; MAXIMUM LIKELIHOOD; NEURAL NETWORKS; PIXELS; REMOTE SENSING; SATELLITE IMAGERY; SATELLITES;

EID: 78049388656     PISSN: 18125654     EISSN: 18125662     Source Type: Journal    
DOI: 10.3923/jas.2010.2847.2854     Document Type: Article
Times cited : (29)

References (23)
  • 1
    • 78049372028 scopus 로고    scopus 로고
    • Comparison of four classification methods to extract land use and land cover from raw satellite images for some remote arid area, Kingdom of Saudi Arabia
    • Ahmadi, F.S. and A.S. Hames, 2009. Comparison of four classification methods to extract land use and land cover from raw satellite images for some remote arid area, Kingdom of Saudi Arabia. J. King Abdulaziz Univ., 20: 167-191.
    • (2009) J. King Abdulaziz Univ. , vol.20 , pp. 167-191
    • Ahmadi, F.S.1    Hames, A.S.2
  • 3
    • 78049359231 scopus 로고    scopus 로고
    • Techniques for the Analysis of Spatial Data
    • In:, Atkinson, P.E. and N.J. Tate (Eds.). John Wiley and Sons, Chichester
    • Atkinson, P.E. and N.J. Tate, 1999. Techniques for the Analysis of Spatial Data. In: Advances in Remote Sensing and GIS Analysis, Atkinson, P.E. and N.J. Tate (Eds.). John Wiley and Sons, Chichester, pp: 1-7.
    • (1999) Advances in Remote Sensing and GIS Analysis , pp. 1-7
    • Atkinson, P.E.1    Tate, N.J.2
  • 4
    • 84888280196 scopus 로고    scopus 로고
    • Synergy in remote sensingBwhat's in a pixel
    • Cracknell, A.P., 1998. Synergy in remote sensingBwhat's in a pixel. Int. J. Remote Sens., 19: 225-247.
    • (1998) Int. J. Remote Sens. , vol.19 , pp. 225-247
    • Cracknell, A.P.1
  • 5
    • 0031080306 scopus 로고    scopus 로고
    • The pixel: A snare and a delusion
    • Fisher, P., 1997. The pixel: A snare and a delusion. Int. J. Remote Sens., 18: 679-685.
    • (1997) Int. J. Remote Sens. , vol.18 , pp. 679-685
    • Fisher, P.1
  • 6
    • 34548420140 scopus 로고    scopus 로고
    • A method for calibrated maximum likelihood classification of forest types
    • Hagner, O. and H. Reese, 2007. A method for calibrated maximum likelihood classification of forest types. Remote Sens. Environ., 110: 438-444.
    • (2007) Remote Sens. Environ. , vol.110 , pp. 438-444
    • Hagner, O.1    Reese, H.2
  • 9
    • 0026442955 scopus 로고
    • Land cover discrimination in SPOT HRV imageiy using artificial neural networkBa 20 class experiment
    • Kanellopoulos, I., A. Varfis, G.G. Wilkinson and J. Meiger, 1992. Land cover discrimination in SPOT HRV imageiy using artificial neural networkBa 20 class experiment. Int. J. Remote Sens., 13: 917-924.
    • (1992) Int. J. Remote Sens. , vol.13 , pp. 917-924
    • Kanellopoulos, I.1    Varfis, A.2    Wilkinson, G.G.3    Meiger, J.4
  • 10
    • 0032552629 scopus 로고    scopus 로고
    • Attributes of neural networks for extracting continuous vegetation variables from optical and radar measurements
    • Kimes, D.S., R.F. Nelson, M.T. Manry and A.K. Fung, 1998. Attributes of neural networks for extracting continuous vegetation variables from optical and radar measurements. Int. J. Remote Sens., 19: 2639-2663.
    • (1998) Int. J. Remote Sens. , vol.19 , pp. 2639-2663
    • Kimes, D.S.1    Nelson, R.F.2    Manry, M.T.3    Fung, A.K.4
  • 11
    • 0037379613 scopus 로고    scopus 로고
    • Some neural network applications in environmental sciences
    • Krasnopolsky, V.M. and F. Chevallier, 2003. Some neural network applications in environmental sciences. Neural Networks, 16: 335-348.
    • (2003) Neural Networks , vol.16 , pp. 335-348
    • Krasnopolsky, V.M.1    Chevallier, F.2
  • 12
    • 0345360604 scopus 로고
    • Semi-supervised artificial neural networks for classification of remotely sensed images
    • Remote Sensing Society, Nottingham
    • Lewis, D.J., D.G. Con, C.R. Gent and C.P. Sheppard, 1992. Semi-supervised artificial neural networks for classification of remotely sensed images. Remote Sensing from Research to Operation. Remote Sensing Society, Nottingham, pp: 489-497.
    • (1992) Remote Sensing from Research to Operation , pp. 489-497
    • Lewis, D.J.1    Con, D.G.2    Gent, C.R.3    Sheppard, C.P.4
  • 14
    • 0037455712 scopus 로고    scopus 로고
    • An experimental study on spectral discrimination capability of a backpropagation neural network classifier
    • Liu, X., A.K. Skidmore and H.V. Oosten, 2003. An experimental study on spectral discrimination capability of a backpropagation neural network classifier. Int. J. Remote Sens., 4: 673-688.
    • (2003) Int. J. Remote Sens. , vol.4 , pp. 673-688
    • Liu, X.1    Skidmore, A.K.2    Oosten, H.V.3
  • 16
    • 0033990462 scopus 로고    scopus 로고
    • Remote sensed satellite imageiy as an information source for industrial peatlands management
    • McGovern, E.A., N.M. Holden, S.M. Ward and J.F. Collins, 2000. Remote sensed satellite imageiy as an information source for industrial peatlands management. Resour. Conserv. Recycl., 28: 67-83.
    • (2000) Resour. Conserv. Recycl. , vol.28 , pp. 67-83
    • McGovern, E.A.1    Holden, N.M.2    Ward, S.M.3    Collins, J.F.4
  • 17
    • 0026622541 scopus 로고
    • Hopfield network for stereo vision correspondence
    • Nasrabadi, N.M. and Y.C. Choo, 1992. Hopfield network for stereo vision correspondence. IEEE Trans. Neural Network., 3: 5-13.
    • (1992) IEEE Trans. Neural Network. , vol.3 , pp. 5-13
    • Nasrabadi, N.M.1    Choo, Y.C.2
  • 18
    • 42149096159 scopus 로고    scopus 로고
    • Land use and land cover analysis in indian context
    • Roy, P.S. and A. Giriraj, 2008. Land use and land cover analysis in indian context. J. Applied Sci., 8: 1346-1353.
    • (2008) J. Applied Sci. , vol.8 , pp. 1346-1353
    • Roy, P.S.1    Giriraj, A.2
  • 19
    • 33845213335 scopus 로고    scopus 로고
    • Remote sensing and GIS for mapping and monitoring land cover and land use changes in the Northwestern coastal zone of Egypt
    • Shalaby, A. and R. Tateishi, 2007. Remote sensing and GIS for mapping and monitoring land cover and land use changes in the Northwestern coastal zone of Egypt. Applied Geography, 27: 28-41.
    • (2007) Applied Geography , vol.27 , pp. 28-41
    • Shalaby, A.1    Tateishi, R.2
  • 20
    • 1242299604 scopus 로고    scopus 로고
    • Artificial neural network based techniques for the retrieval of SWE and snow depth from SSM/I data
    • Tedesco, M., J. Pulliainen, M. Takala, M. Hallikainen and P. Pampaloni, 2004. Artificial neural network based techniques for the retrieval of SWE and snow depth from SSM/I data. Remote Sens. Environ., 90: 76-85.
    • (2004) Remote Sens. Environ. , vol.90 , pp. 76-85
    • Tedesco, M.1    Pulliainen, J.2    Takala, M.3    Hallikainen, M.4    Pampaloni, P.5
  • 21
    • 0037211212 scopus 로고    scopus 로고
    • Image classification of a Northern Peatland complex using spectral and plant community data
    • Thomas, V., P. Jelinski, D. Miller, J. Lafleur and J.H. McCaughey, 2002. Image classification of a Northern Peatland complex using spectral and plant community data. Remote Sens. Environ., 84: 83-99.
    • (2002) Remote Sens. Environ. , vol.84 , pp. 83-99
    • Thomas, V.1    Jelinski, P.2    Miller, D.3    Lafleur, J.4    McCaughey, J.H.5
  • 23
    • 0037945983 scopus 로고    scopus 로고
    • Open Questions in Neurocomputing for Earth Observation
    • In:, Kanellopoulos, I., G.G. Wilkinson, F. Roli and J. Austin (Eds.). Spring er-Verlag, Berlin
    • Wilkinson, G.G., 1997. Open Questions in Neurocomputing for Earth Observation. In: Neuro- Computing in Remote Sensing Data Analysis, Kanellopoulos, I., G.G. Wilkinson, F. Roli and J. Austin (Eds.). Spring er-Verlag, Berlin, pp: 3-13.
    • (1997) Neuro-Computing in Remote Sensing Data Analysis , pp. 3-13
    • Wilkinson, G.G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.