메뉴 건너뛰기




Volumn 60, Issue 5, 2010, Pages 1332-1342

Positive solutions of second-order delay differential equations with a damping term

Author keywords

Integro differential equation; Positive solution; Second order delay differential equation

Indexed keywords

DAMPING; INTEGRODIFFERENTIAL EQUATIONS;

EID: 78049262422     PISSN: 08981221     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.camwa.2010.06.014     Document Type: Article
Times cited : (15)

References (22)
  • 2
    • 0009038506 scopus 로고
    • Differential equations of the second order with retarded argument
    • AMS, Providence, R.I
    • S.B. Norkin, Differential Equations of the Second Order with Retarded Argument, in: Translation of Mathematical Monographs, AMS, vol. 31, Providence, R.I, 1972.
    • (1972) Translation of Mathematical Monographs , vol.31
    • Norkin, S.B.1
  • 11
    • 3042601399 scopus 로고
    • Stability criteria for certain second-order delay differential equations with mixed coefficients
    • B. Cahlon, D. Schmidt, Stability criteria for certain second-order delay differential equations with mixed coefficients, J. Comput. Appl. Math. 170 (1) (1994) 79-102.
    • (1994) J. Comput. Appl. Math. , vol.170 , Issue.1 , pp. 79-102
    • Cahlon, B.1    Schmidt, D.2
  • 12
    • 84968468826 scopus 로고
    • On the retarded Liénard equation
    • B. Zhang, On the retarded Liénard equation, Proc. Amer. Math. Soc. 115 (3) (1992) 779-785.
    • (1992) Proc. Amer. Math. Soc. , vol.115 , Issue.3 , pp. 779-785
    • Zhang, B.1
  • 13
    • 33750328072 scopus 로고
    • Asymptotic stability of second order ordinary, functional, and partial differential equations
    • T. A. Burton, L. Hatvani, Asymptotic stability of second order ordinary, functional, and partial differential equations, J. Math. Anal. Appl. 176 (1993) 261-281.
    • (1993) J. Math. Anal. Appl. , vol.176 , pp. 261-281
    • Burton, T.A.1    Hatvani, L.2
  • 15
    • 78049272953 scopus 로고    scopus 로고
    • Nonoscillation and stability for the second order ordinary differential equation with a damping term
    • L. Berezansky, E. Braverman, A. Domoshnitsky, Nonoscillation and stability for the second order ordinary differential equation with a damping term, Funct. Differ. Equ. 16 (1-2) (2009) 15-42.
    • (2009) Funct. Differ. Equ. , vol.16 , Issue.1-2 , pp. 15-42
    • Berezansky, L.1    Braverman, E.2    Domoshnitsky, A.3
  • 16
    • 33645128253 scopus 로고
    • Componentwise applicability of Chaplygin's theorem to a system of linear differential equations with delay
    • (in Russian)
    • A. Domoshnitsky, Componentwise applicability of Chaplygin's theorem to a system of linear differential equations with delay, Differentsialnye Uravneniya 26 (10) (1990) 1699-1705 (in Russian)
    • (1990) Differentsialnye Uravneniya , vol.26 , Issue.10 , pp. 1699-1705
    • Domoshnitsky, A.1
  • 17
    • 78049286495 scopus 로고
    • Translation in Differ. Equ. 26 (1990), (10) 1254-1259 (1991).
    • (1990) Translation in Differ. Equ. , vol.26 , Issue.10 , pp. 1254-1259
  • 18
    • 0001539504 scopus 로고    scopus 로고
    • Some oscillation problems for a second order linear delay differential equation
    • L. Berezansky, E. Braverman, Some oscillation problems for a second order linear delay differential equation, J. Math. Anal. Appl. 220 (2) (1998) 719-740.
    • (1998) J. Math. Anal. Appl. , vol.220 , Issue.2 , pp. 719-740
    • Berezansky, L.1    Braverman, E.2
  • 19
    • 78049291523 scopus 로고    scopus 로고
    • On connection between second-order delay differential equations and integro-differential equations with delay
    • doi: 10.1155/2010/143298. Article ID 143298.
    • L. Berezansky, J. Diblík, Z. Šmarda, On connection between second-order delay differential equations and integro-differential equations with delay, Adv. Difference Equ. 2010 (2010) 8 pages, doi: 10.1155/2010/143298. Article ID 143298.
    • (2010) Adv. Difference Equ. , vol.2010 , pp. 8
    • Berezansky, L.1    Diblík, J.2    Šmarda, Z.3
  • 22
    • 34547588893 scopus 로고
    • Compact linear operators of Volterra type
    • J.R. Ringrose, Compact linear operators of Volterra type, Proc. Cambridge Philos. Soc. 51 (1955) 44-55.
    • (1955) Proc. Cambridge Philos. Soc. , vol.51 , pp. 44-55
    • Ringrose, J.R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.