-
1
-
-
78751697032
-
Locality preserving nonnegative matrix factorization
-
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc
-
Cai, D.; He, X.; Wang, X.; Bao, H.; and Han, J. 2009. Locality preserving nonnegative matrix factorization. In IJCAI'09: Proceedings of the. 21st international joint conference on Artifical intelligence, 1010-1015. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.
-
(2009)
IJCAI'09: Proceedings of The. 21st International Joint Conference on Artifical Intelligence
, pp. 1010-1015
-
-
Cai, D.1
He, X.2
Wang, X.3
Bao, H.4
Han, J.5
-
3
-
-
33744552752
-
For most large underdetermined systems of equations, the minimal 11-norm near-solution approximates the sparsest near-solution
-
Donoho, D. L. 2006. For most large underdetermined systems of equations, the minimal 11-norm near-solution approximates the sparsest near-solution. Communications on pure and applied mathematics 59(7):907-934.
-
(2006)
Communications on Pure and Applied Mathematics
, vol.59
, Issue.7
, pp. 907-934
-
-
Donoho, D.L.1
-
5
-
-
78049255234
-
Multi-manifold semi-supervised learning
-
Goldberg, A.; Zhu, X.; Singh, A.; Xu, Z.; and Nowak, R. 2009. Multi-manifold semi-supervised learning. In Twelfth International Conference on Artificial Intelligence and Statistics.
-
(2009)
Twelfth International Conference on Artificial Intelligence and Statistics
-
-
Goldberg, A.1
Zhu, X.2
Singh, A.3
Xu, Z.4
Nowak, R.5
-
7
-
-
84900510076
-
Non-negative matrix factorization with sparseness constraints
-
Hover, P. O. 2004. Non-negative matrix factorization with sparseness constraints. J. Mach. team. Res. 5:1457-1469.
-
(2004)
J. Mach. Team. Res.
, vol.5
, pp. 1457-1469
-
-
Hover, P.O.1
-
11
-
-
0042378381
-
Laplacian eigenmaps for dimensionality reduction and data representation
-
Niyogi, P. 2003. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation 15:1373-1396.
-
(2003)
Neural Computation
, vol.15
, pp. 1373-1396
-
-
Niyogi, P.1
-
12
-
-
0034704222
-
Nonlinear dimensionality reduction by locally linear embedding
-
Roweis, S. T., and Saul. L. K. 2000. Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500):2323-2326.
-
(2000)
Science
, vol.290
, Issue.5500
, pp. 2323-2326
-
-
Roweis, S.T.1
Saul, L.K.2
-
14
-
-
11144327494
-
Fisher non-negative matrix factorization for learning local features
-
Wang, Y; Jia, Y.: Hu, C: and Turk, M. 2004. Fisher non-negative matrix factorization for learning local features. In Asian Conference, on Computer Vision.
-
(2004)
Asian Conference, on Computer Vision
-
-
Wang, Y.1
Jia, Y.2
Hu, C.3
Turk, M.4
-
15
-
-
1542347778
-
Document clustering based on non-negative matrix factorization
-
New York, NY, USA: ACM
-
Xu, W.; Liu, X.; and Gong, Y. 2003. Document clustering based on non-negative matrix factorization. In SIGIR '03: Proceedings of the 26th annual international ACM SIGIR conference on Research and development in information retrieval, 267-273. New York, NY, USA: ACM.
-
(2003)
SIGIR '03: Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval
, pp. 267-273
-
-
Xu, W.1
Liu, X.2
Gong, Y.3
-
16
-
-
33646528853
-
Exploiting discriminant information in non-negative matrix factorization with application to frontal face verification
-
Zafeiriou, S.; Tefas, A.; Buciu, I.: and Pitas, I. 2007. Exploiting discriminant information in non-negative matrix factorization with application to frontal face verification. IEEE Transactions on Neural Networks 17(3):683-695.
-
(2007)
IEEE Transactions on Neural Networks
, vol.17
, Issue.3
, pp. 683-695
-
-
Zafeiriou, S.1
Tefas, A.2
Buciu, I.3
Pitas, I.4
|