메뉴 건너뛰기




Volumn 283, Issue 11, 2010, Pages 1664-1673

Absence of collapse in a parabolic chemotaxis system with signal-dependent sensitivity

Author keywords

Boundedness; Chemotaxis; Global existence

Indexed keywords


EID: 77958535262     PISSN: 0025584X     EISSN: 15222616     Source Type: Journal    
DOI: 10.1002/mana.200810838     Document Type: Article
Times cited : (169)

References (31)
  • 2
    • 84914830669 scopus 로고
    • P bounds of solutions of reaction-diffusion equations
    • P bounds of solutions of reaction-diffusion equations, Comm. Partial Differential Equations 4, 827-868 (1979).
    • (1979) Comm. Partial Differential Equations , vol.4 , pp. 827-868
    • Alikakos, N.D.1
  • 3
    • 0001580322 scopus 로고    scopus 로고
    • Global solutions to some parabolic-elliptic systems of chemotaxis
    • P. Biler, Global solutions to some parabolic-elliptic systems of chemotaxis, Adv. Math. Sci. Appl. 9 (1), 347-359 (1999).
    • (1999) Adv. Math. Sci. Appl. , vol.9 , Issue.1 , pp. 347-359
    • Biler, P.1
  • 4
    • 77958613406 scopus 로고    scopus 로고
    • Chemotaxis (Imperial College Press, London, 2004)
    • M. Eisenbach, Chemotaxis (Imperial College Press, London, 2004)
    • Eisenbach, M.1
  • 5
    • 77958576888 scopus 로고    scopus 로고
    • and, On convergence to equilibria for the Keller-Segel chemotaxis model, to appear in J. Differential Equations.
    • E. Feireisl, Ph. Laurencot, and H. Petzeltovä, On convergence to equilibria for the Keller-Segel chemotaxis model, to appear in J. Differential Equations.
    • Feireisl, E.1    Laurencot, P.2    Petzeltovä, H.3
  • 6
    • 77958616570 scopus 로고    scopus 로고
    • Partial Differential Equations (Holt, Rinehart & Winston, New York, 1969).
    • A. Friedman, Partial Differential Equations (Holt, Rinehart & Winston, New York, 1969).
    • Friedman, A.1
  • 7
    • 33747156206 scopus 로고    scopus 로고
    • Travelling front solutions arising in the chemotaxis-growth model
    • M. Funaki, M. Mimura, and T. Tsujikawa, Travelling front solutions arising in the chemotaxis-growth model, Interfaces and Free Boundaries 8, 223-245 (2006).
    • (2006) Interfaces and Free Boundaries , vol.8 , pp. 223-245
    • Funaki, M.1    Mimura, M.2    Tsujikawa, T.3
  • 8
    • 0032445844 scopus 로고    scopus 로고
    • Global behavior of a reaction-diffusion system modelling chemotaxis
    • H. Gajewski, and K. Zacharias, Global behavior of a reaction-diffusion system modelling chemotaxis, Math. Nachr. 195, 77-114 (1998).
    • (1998) Math. Nachr. , vol.195 , pp. 77-114
    • Gajewski, H.1    Zacharias, K.2
  • 10
    • 77958575860 scopus 로고    scopus 로고
    • and, A users guide to PDE models for chemotaxis, to appear in J. Math. Biol.
    • T. Hillen, and K. Painter, A users guide to PDE models for chemotaxis, to appear in J. Math. Biol.
    • Hillen, T.1    Painter, K.2
  • 11
    • 4744373150 scopus 로고    scopus 로고
    • From 1970 until present: The Keller-Segel model in chemotaxis and its consequences
    • D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences, Jahresb. Deutsch. Math.-Verein. 105 (3), 103-165 (2003).
    • (2003) Jahresb. Deutsch. Math.-Verein. , vol.105 , Issue.3 , pp. 103-165
    • Horstmann, D.1
  • 12
    • 0035646454 scopus 로고    scopus 로고
    • Blow-up in a chemotaxis model without symmetry assumptions
    • D. Horstmann, and G. Wang, Blow-up in a chemotaxis model without symmetry assumptions, European J. Appl. Math. 12, 159-177 (2001).
    • (2001) European J. Appl. Math. , vol.12 , pp. 159-177
    • Horstmann, D.1    Wang, G.2
  • 13
    • 18144371222 scopus 로고    scopus 로고
    • Boundedness vs. blow-up in a chemotaxis system
    • D. Horstmann, and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations 215 (1), 52-107 (2005).
    • (2005) J. Differential Equations , vol.215 , Issue.1 , pp. 52-107
    • Horstmann, D.1    Winkler, M.2
  • 14
    • 0014748565 scopus 로고
    • Initiation of slime mold aggregation viewed as an instability
    • E. F. Keller, and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol. 26, 399-415 (1970).
    • (1970) J. Theor. Biol. , vol.26 , pp. 399-415
    • Keller, E.F.1    Segel, L.A.2
  • 15
    • 77958530876 scopus 로고    scopus 로고
    • and, Linear and Quasi-linear Equations of Parabolic Type (Amer. Math. Soc., Providence, RI, 1968).
    • O. A. Ladyzenskaja, V. A. Solonnikov, and N. N. Ural'ceva, Linear and Quasi-linear Equations of Parabolic Type (Amer. Math. Soc., Providence, RI, 1968).
    • Ladyzenskaja, O.A.1    Solonnikov, V.A.2    Ural'ceva, N.N.3
  • 16
    • 0031162898 scopus 로고    scopus 로고
    • A system of reaction-diffusion equations arising in the theory of reinforced random walks
    • H. A. Levine, and B. D. Sleeman, A system of reaction-diffusion equations arising in the theory of reinforced random walks, SIAM J. Appl. Math. 57, 683-730 (1997).
    • (1997) SIAM J. Appl. Math. , vol.57 , pp. 683-730
    • Levine, H.A.1    Sleeman, B.D.2
  • 17
    • 0030243891 scopus 로고    scopus 로고
    • Aggregating pattern dynamics in a chemotaxis model including growth
    • M. Mimura, and T. Tsujikawa, Aggregating pattern dynamics in a chemotaxis model including growth, Phys. A 230 (3-4), 499-543 (1996).
    • (1996) Phys. A , vol.230 , Issue.3-4 , pp. 499-543
    • Mimura, M.1    Tsujikawa, T.2
  • 18
    • 77958554066 scopus 로고    scopus 로고
    • Mathematical Biology I: An Introduction, 3rd ed., Series: Interdisciplinary Applied Mathematics (Springer, Heidelberg - New York, 2002).
    • J. D. Murray, Mathematical Biology I: An Introduction, 3rd ed., Series: Interdisciplinary Applied Mathematics Vol. 17 (Springer, Heidelberg - New York, 2002).
    • , vol.17
    • Murray, J.D.1
  • 19
    • 77958577426 scopus 로고    scopus 로고
    • Mathematical Biology II: Spatial Models and Biomedical Applications, 3rd ed., Series: Interdisciplinary Applied Mathematics (Springer, Heidelberg - New York, 2003).
    • J. D. Murray, Mathematical Biology II: Spatial Models and Biomedical Applications, 3rd ed., Series: Interdisciplinary Applied Mathematics Vol. 18 (Springer, Heidelberg - New York, 2003).
    • , vol.18
    • Murray, J.D.1
  • 20
    • 0035425984 scopus 로고    scopus 로고
    • Global Existence and Blowup of Solutions to a Chemotaxis System
    • T. Nagai, Global Existence and Blowup of Solutions to a Chemotaxis System, Nonlinear Anal. 47, 777-787 (2001).
    • (2001) Nonlinear Anal. , vol.47 , pp. 777-787
    • Nagai, T.1
  • 21
    • 0000687738 scopus 로고    scopus 로고
    • Chemotactic collapse in a parabolic system of mathematical biology
    • T. Nagai, T. Senba, and T. Suzuki, Chemotactic collapse in a parabolic system of mathematical biology, Hiroshima Math. J. 30, 463-497 (2000).
    • (2000) Hiroshima Math. J. , vol.30 , pp. 463-497
    • Nagai, T.1    Senba, T.2    Suzuki, T.3
  • 22
    • 0001205112 scopus 로고    scopus 로고
    • Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis
    • T. Nagai, T. Senba, and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac. 40, 411-433 (1997).
    • (1997) Funkcial. Ekvac. , vol.40 , pp. 411-433
    • Nagai, T.1    Senba, T.2    Yoshida, K.3
  • 23
    • 0005525169 scopus 로고    scopus 로고
    • Global existence of solutions to the parabolic system of chemotaxis
    • T. Nagai, T. Senba, and K. Yoshida, Global existence of solutions to the parabolic system of chemotaxis, RIMS Kokyuroku 1009, 22-28 (1997).
    • (1997) RIMS Kokyuroku , vol.1009 , pp. 22-28
    • Nagai, T.1    Senba, T.2    Yoshida, K.3
  • 25
    • 0141644434 scopus 로고    scopus 로고
    • Finite dimensional attractors for one-dimensional Keller-Segel equations
    • K. Osaki, and A. Yagi, Finite dimensional attractors for one-dimensional Keller-Segel equations, Funkcial. Ekvac. 44, 441-469 (2001).
    • (2001) Funkcial. Ekvac. , vol.44 , pp. 441-469
    • Osaki, K.1    Yagi, A.2
  • 26
    • 21244493212 scopus 로고    scopus 로고
    • Metatsability in Chemotaxis Models
    • A. B. Potapov, and T. Hillen, Metatsability in Chemotaxis Models, J. Dyn. Differ. Equations 17 (2), 293-330 (2005).
    • (2005) J. Dyn. Differ. Equations , vol.17 , Issue.2 , pp. 293-330
    • Potapov, A.B.1    Hillen, T.2
  • 27
    • 0001373727 scopus 로고
    • Stationary solutions of chemotaxis systems
    • R. Schaaf, Stationary solutions of chemotaxis systems, Trans. Amer. Math. Soc. 292, 531-556 (1985).
    • (1985) Trans. Amer. Math. Soc. , vol.292 , pp. 531-556
    • Schaaf, R.1
  • 28
    • 0017136101 scopus 로고
    • Incorporation of receptor kinetics into a model for bacterial chemotaxis
    • L. A. Segel, Incorporation of receptor kinetics into a model for bacterial chemotaxis, J. Theor. Biol. 57 (1), 23-42 (1976).
    • (1976) J. Theor. Biol. , vol.57 , Issue.1 , pp. 23-42
    • Segel, L.A.1
  • 29
    • 0010915457 scopus 로고    scopus 로고
    • Parabolic system of chemotaxis: blowup in a finite and the infinite time
    • T. Senba, and T. Suzuki, Parabolic system of chemotaxis: blowup in a finite and the infinite time, Methods Appl. Anal. 8, 349-367 (2001).
    • (2001) Methods Appl. Anal. , vol.8 , pp. 349-367
    • Senba, T.1    Suzuki, T.2
  • 30
  • 31
    • 0001488448 scopus 로고    scopus 로고
    • Norm behavior of solutions to a parabolic system of chemotaxis
    • A. Yagi, Norm behavior of solutions to a parabolic system of chemotaxis, Math. Jap. 45, 241-265 (1997).
    • (1997) Math. Jap. , vol.45 , pp. 241-265
    • Yagi, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.