-
1
-
-
10244226666
-
Chemotaxis and growth system with singular sensitivity function
-
M. Aida, K. Osaki, T. Tsujikawa, A. Yagi, and M. Mimura, Chemotaxis and growth system with singular sensitivity function, Nonlinear Anal. Real World Appl. 6, No. 2, 323-336 (2005).
-
(2005)
Nonlinear Anal. Real World Appl.
, vol.6
, Issue.2
, pp. 323-336
-
-
Aida, M.1
Osaki, K.2
Tsujikawa, T.3
Yagi, A.4
Mimura, M.5
-
2
-
-
84914830669
-
P bounds of solutions of reaction-diffusion equations
-
P bounds of solutions of reaction-diffusion equations, Comm. Partial Differential Equations 4, 827-868 (1979).
-
(1979)
Comm. Partial Differential Equations
, vol.4
, pp. 827-868
-
-
Alikakos, N.D.1
-
3
-
-
0001580322
-
Global solutions to some parabolic-elliptic systems of chemotaxis
-
P. Biler, Global solutions to some parabolic-elliptic systems of chemotaxis, Adv. Math. Sci. Appl. 9 (1), 347-359 (1999).
-
(1999)
Adv. Math. Sci. Appl.
, vol.9
, Issue.1
, pp. 347-359
-
-
Biler, P.1
-
4
-
-
77958613406
-
-
Chemotaxis (Imperial College Press, London, 2004)
-
M. Eisenbach, Chemotaxis (Imperial College Press, London, 2004)
-
-
-
Eisenbach, M.1
-
5
-
-
77958576888
-
-
and, On convergence to equilibria for the Keller-Segel chemotaxis model, to appear in J. Differential Equations.
-
E. Feireisl, Ph. Laurencot, and H. Petzeltovä, On convergence to equilibria for the Keller-Segel chemotaxis model, to appear in J. Differential Equations.
-
-
-
Feireisl, E.1
Laurencot, P.2
Petzeltovä, H.3
-
6
-
-
77958616570
-
-
Partial Differential Equations (Holt, Rinehart & Winston, New York, 1969).
-
A. Friedman, Partial Differential Equations (Holt, Rinehart & Winston, New York, 1969).
-
-
-
Friedman, A.1
-
7
-
-
33747156206
-
Travelling front solutions arising in the chemotaxis-growth model
-
M. Funaki, M. Mimura, and T. Tsujikawa, Travelling front solutions arising in the chemotaxis-growth model, Interfaces and Free Boundaries 8, 223-245 (2006).
-
(2006)
Interfaces and Free Boundaries
, vol.8
, pp. 223-245
-
-
Funaki, M.1
Mimura, M.2
Tsujikawa, T.3
-
8
-
-
0032445844
-
Global behavior of a reaction-diffusion system modelling chemotaxis
-
H. Gajewski, and K. Zacharias, Global behavior of a reaction-diffusion system modelling chemotaxis, Math. Nachr. 195, 77-114 (1998).
-
(1998)
Math. Nachr.
, vol.195
, pp. 77-114
-
-
Gajewski, H.1
Zacharias, K.2
-
10
-
-
77958575860
-
-
and, A users guide to PDE models for chemotaxis, to appear in J. Math. Biol.
-
T. Hillen, and K. Painter, A users guide to PDE models for chemotaxis, to appear in J. Math. Biol.
-
-
-
Hillen, T.1
Painter, K.2
-
11
-
-
4744373150
-
From 1970 until present: The Keller-Segel model in chemotaxis and its consequences
-
D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences, Jahresb. Deutsch. Math.-Verein. 105 (3), 103-165 (2003).
-
(2003)
Jahresb. Deutsch. Math.-Verein.
, vol.105
, Issue.3
, pp. 103-165
-
-
Horstmann, D.1
-
12
-
-
0035646454
-
Blow-up in a chemotaxis model without symmetry assumptions
-
D. Horstmann, and G. Wang, Blow-up in a chemotaxis model without symmetry assumptions, European J. Appl. Math. 12, 159-177 (2001).
-
(2001)
European J. Appl. Math.
, vol.12
, pp. 159-177
-
-
Horstmann, D.1
Wang, G.2
-
13
-
-
18144371222
-
Boundedness vs. blow-up in a chemotaxis system
-
D. Horstmann, and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations 215 (1), 52-107 (2005).
-
(2005)
J. Differential Equations
, vol.215
, Issue.1
, pp. 52-107
-
-
Horstmann, D.1
Winkler, M.2
-
14
-
-
0014748565
-
Initiation of slime mold aggregation viewed as an instability
-
E. F. Keller, and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol. 26, 399-415 (1970).
-
(1970)
J. Theor. Biol.
, vol.26
, pp. 399-415
-
-
Keller, E.F.1
Segel, L.A.2
-
15
-
-
77958530876
-
-
and, Linear and Quasi-linear Equations of Parabolic Type (Amer. Math. Soc., Providence, RI, 1968).
-
O. A. Ladyzenskaja, V. A. Solonnikov, and N. N. Ural'ceva, Linear and Quasi-linear Equations of Parabolic Type (Amer. Math. Soc., Providence, RI, 1968).
-
-
-
Ladyzenskaja, O.A.1
Solonnikov, V.A.2
Ural'ceva, N.N.3
-
16
-
-
0031162898
-
A system of reaction-diffusion equations arising in the theory of reinforced random walks
-
H. A. Levine, and B. D. Sleeman, A system of reaction-diffusion equations arising in the theory of reinforced random walks, SIAM J. Appl. Math. 57, 683-730 (1997).
-
(1997)
SIAM J. Appl. Math.
, vol.57
, pp. 683-730
-
-
Levine, H.A.1
Sleeman, B.D.2
-
17
-
-
0030243891
-
Aggregating pattern dynamics in a chemotaxis model including growth
-
M. Mimura, and T. Tsujikawa, Aggregating pattern dynamics in a chemotaxis model including growth, Phys. A 230 (3-4), 499-543 (1996).
-
(1996)
Phys. A
, vol.230
, Issue.3-4
, pp. 499-543
-
-
Mimura, M.1
Tsujikawa, T.2
-
18
-
-
77958554066
-
-
Mathematical Biology I: An Introduction, 3rd ed., Series: Interdisciplinary Applied Mathematics (Springer, Heidelberg - New York, 2002).
-
J. D. Murray, Mathematical Biology I: An Introduction, 3rd ed., Series: Interdisciplinary Applied Mathematics Vol. 17 (Springer, Heidelberg - New York, 2002).
-
, vol.17
-
-
Murray, J.D.1
-
19
-
-
77958577426
-
-
Mathematical Biology II: Spatial Models and Biomedical Applications, 3rd ed., Series: Interdisciplinary Applied Mathematics (Springer, Heidelberg - New York, 2003).
-
J. D. Murray, Mathematical Biology II: Spatial Models and Biomedical Applications, 3rd ed., Series: Interdisciplinary Applied Mathematics Vol. 18 (Springer, Heidelberg - New York, 2003).
-
, vol.18
-
-
Murray, J.D.1
-
20
-
-
0035425984
-
Global Existence and Blowup of Solutions to a Chemotaxis System
-
T. Nagai, Global Existence and Blowup of Solutions to a Chemotaxis System, Nonlinear Anal. 47, 777-787 (2001).
-
(2001)
Nonlinear Anal.
, vol.47
, pp. 777-787
-
-
Nagai, T.1
-
21
-
-
0000687738
-
Chemotactic collapse in a parabolic system of mathematical biology
-
T. Nagai, T. Senba, and T. Suzuki, Chemotactic collapse in a parabolic system of mathematical biology, Hiroshima Math. J. 30, 463-497 (2000).
-
(2000)
Hiroshima Math. J.
, vol.30
, pp. 463-497
-
-
Nagai, T.1
Senba, T.2
Suzuki, T.3
-
22
-
-
0001205112
-
Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis
-
T. Nagai, T. Senba, and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac. 40, 411-433 (1997).
-
(1997)
Funkcial. Ekvac.
, vol.40
, pp. 411-433
-
-
Nagai, T.1
Senba, T.2
Yoshida, K.3
-
23
-
-
0005525169
-
Global existence of solutions to the parabolic system of chemotaxis
-
T. Nagai, T. Senba, and K. Yoshida, Global existence of solutions to the parabolic system of chemotaxis, RIMS Kokyuroku 1009, 22-28 (1997).
-
(1997)
RIMS Kokyuroku
, vol.1009
, pp. 22-28
-
-
Nagai, T.1
Senba, T.2
Yoshida, K.3
-
24
-
-
0036778798
-
Exponential attractor for a chemotaxis-growth system of equations
-
K. Osaki, T. Tsujikawa, A. Yagi, and M. Mimura, Exponential attractor for a chemotaxis-growth system of equations, Nonlinear Anal., Theory Methods Appl. 51, 119-144 (2002).
-
(2002)
Nonlinear Anal., Theory Methods Appl.
, vol.51
, pp. 119-144
-
-
Osaki, K.1
Tsujikawa, T.2
Yagi, A.3
Mimura, M.4
-
25
-
-
0141644434
-
Finite dimensional attractors for one-dimensional Keller-Segel equations
-
K. Osaki, and A. Yagi, Finite dimensional attractors for one-dimensional Keller-Segel equations, Funkcial. Ekvac. 44, 441-469 (2001).
-
(2001)
Funkcial. Ekvac.
, vol.44
, pp. 441-469
-
-
Osaki, K.1
Yagi, A.2
-
26
-
-
21244493212
-
Metatsability in Chemotaxis Models
-
A. B. Potapov, and T. Hillen, Metatsability in Chemotaxis Models, J. Dyn. Differ. Equations 17 (2), 293-330 (2005).
-
(2005)
J. Dyn. Differ. Equations
, vol.17
, Issue.2
, pp. 293-330
-
-
Potapov, A.B.1
Hillen, T.2
-
27
-
-
0001373727
-
Stationary solutions of chemotaxis systems
-
R. Schaaf, Stationary solutions of chemotaxis systems, Trans. Amer. Math. Soc. 292, 531-556 (1985).
-
(1985)
Trans. Amer. Math. Soc.
, vol.292
, pp. 531-556
-
-
Schaaf, R.1
-
28
-
-
0017136101
-
Incorporation of receptor kinetics into a model for bacterial chemotaxis
-
L. A. Segel, Incorporation of receptor kinetics into a model for bacterial chemotaxis, J. Theor. Biol. 57 (1), 23-42 (1976).
-
(1976)
J. Theor. Biol.
, vol.57
, Issue.1
, pp. 23-42
-
-
Segel, L.A.1
-
29
-
-
0010915457
-
Parabolic system of chemotaxis: blowup in a finite and the infinite time
-
T. Senba, and T. Suzuki, Parabolic system of chemotaxis: blowup in a finite and the infinite time, Methods Appl. Anal. 8, 349-367 (2001).
-
(2001)
Methods Appl. Anal.
, vol.8
, pp. 349-367
-
-
Senba, T.1
Suzuki, T.2
-
31
-
-
0001488448
-
Norm behavior of solutions to a parabolic system of chemotaxis
-
A. Yagi, Norm behavior of solutions to a parabolic system of chemotaxis, Math. Jap. 45, 241-265 (1997).
-
(1997)
Math. Jap.
, vol.45
, pp. 241-265
-
-
Yagi, A.1
|