메뉴 건너뛰기




Volumn , Issue , 2010, Pages 470-473

Notice of Retraction: Mining top-k fault tolerant association rules by redundant pattern disambiguation in data streams

Author keywords

Data stream; Fault tolerant association rule; Negative itemset; Redundant pattern; Top k

Indexed keywords

ASSOCIATION RULES; FAULT TOLERANCE; INTELLIGENT COMPUTING;

EID: 77958511702     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICICCI.2010.91     Document Type: TB
Times cited : (4)

References (8)
  • 1
    • 49749101995 scopus 로고    scopus 로고
    • Mining statistical information of frequent fault-tolerant patterns in transactional databases
    • Oct. Doi: 10.1109/ICDM.2007.48
    • A. K. Poernomo and V. Gopalkrishnan, "Mining statistical information of frequent fault-tolerant patterns in transactional databases," Data Mining (DM 07), Oct. 2007, pp. 272-281, Doi: 10.1109/ICDM.2007.48.
    • (2007) Data Mining (DM 07) , pp. 272-281
    • Poernomo, A.K.1    Gopalkrishnan, V.2
  • 2
    • 3843055627 scopus 로고    scopus 로고
    • Efficient mining of both positive and negative association rules
    • July Doi: 10.1145/1010614.1010616
    • X. Wu, C. Zhang, and S. Zhang, "Efficient mining of both positive and negative association rules," ACM Transactions on Information Systems, Vol. 22, July 2004, pp. 381-405, Doi: 10.1145/1010614.1010616.
    • (2004) ACM Transactions on Information Systems , vol.22 , pp. 381-405
    • Wu, X.1    Zhang, C.2    Zhang, S.3
  • 3
    • 34248204314 scopus 로고    scopus 로고
    • Exception Rules Mining Based on Negative Association Rules
    • Computational Science and Its Applications - ICCSA 2004
    • O. Daly and D. Taniar, "Exception Rules Mining Based On Negative Association Rules," Lecture Notes in Computer Science, Vol. 3046, Apr. 2004, pp 543-552, doi:10.1007/b98054. (Pubitemid 38761476)
    • (2004) LECTURE NOTES IN COMPUTER SCIENCE , Issue.3046 , pp. 543-552
    • Daly, O.1    Taniar, D.2
  • 5
    • 77949714897 scopus 로고    scopus 로고
    • Efficient mining of strong negative association rules in multi-database
    • Dec. Doi: 10.1109/CISE.2009.5364801
    • H. Li and X. G. Hu, "Efficient mining of strong negative association rules in multi-database," Computational Intelligence and Software Engineering (CISE 09), Dec. 2009, pp.1-4, Doi: 10.1109/CISE.2009.5364801.
    • (2009) Computational Intelligence and Software Engineering (CISE 09) , pp. 1-4
    • Li, H.1    Hu, X.G.2
  • 6
    • 0348230637 scopus 로고    scopus 로고
    • Finding frequent items in data streams
    • Jan. Doi:10.1016/S0304-3975(03)00400-6
    • M. Charikara, K. Chenb, and M. F. Coltone, "Finding frequent items in data streams," Theoretieal Computer Science, Vol. 312, Jan. 2004, pp. 3-15, Doi:10.1016/S0304-3975(03)00400-6.
    • (2004) Theoretieal Computer Science , vol.312 , pp. 3-15
    • Charikara, M.1    Chenb, K.2    Coltone, M.F.3
  • 7
    • 0035387939 scopus 로고    scopus 로고
    • A new approach to online generation of association rules
    • DOI 10.1109/69.940730
    • C. C. Aggarwal and P. S. Yu, "A New Approach to Online Generation of Association Rules," IEEE Transactions on Knowledge and Data Engineering (ITKDE 01), Aug. 2001, pp. 527-540, Doi: 10.1109/69.940730. (Pubitemid 32828740)
    • (2001) IEEE Transactions on Knowledge and Data Engineering , vol.13 , Issue.4 , pp. 527-540
    • Aggarwal, C.C.1    Yu, P.S.2
  • 8
    • 55149125179 scopus 로고    scopus 로고
    • Mining the frequent patterns in an arbitrary sliding window over online data streams
    • Oct. Doi: 10.3724/SP.J.1001.2008.02585
    • G. H. Li and H. Chen, "Mining the frequent patterns in an arbitrary sliding window over online data streams," Journal of Software, Vol.19, No.10, Oct. 2008, pp. 2585-2596, Doi: 10.3724/SP.J.1001.2008.02585.
    • (2008) Journal of Software , vol.19 , Issue.10 , pp. 2585-2596
    • Li, G.H.1    Chen, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.