메뉴 건너뛰기




Volumn 80, Issue 11, 2010, Pages 1237-1252

Bayesian estimation of the multidimensional graded response model with nonignorable missing data

Author keywords

Bayesian estimation; Data augmentation; Gibbs sampling; Item response theory; Nonignorable missing data

Indexed keywords


EID: 77958489694     PISSN: 00949655     EISSN: 15635163     Source Type: Journal    
DOI: 10.1080/00949650903029276     Document Type: Article
Times cited : (4)

References (22)
  • 1
    • 0017133178 scopus 로고
    • Inference and missing data
    • D.B. Rubin, Inference and missing data, Biometrika 63 (1976), pp. 581-592.
    • (1976) Biometrika , vol.63 , pp. 581-592
    • Rubin, D.B.1
  • 2
    • 20744458649 scopus 로고    scopus 로고
    • A one dimensional latent trait model to infer attitude from nonresponse fornominal data
    • I. Moustaki and C. O'Muircheartaigh, A one dimensional latent trait model to infer attitude from nonresponse fornominal data, Statistica 60(2) (2000), pp. 259-276.
    • (2000) Statistica , vol.60 , Issue.2 , pp. 259-276
    • Moustaki, I.1    O'Muircheartaigh, C.2
  • 3
    • 0034354265 scopus 로고    scopus 로고
    • Weighting for item non-response in attitude scales by using latent variable models withcovariates
    • I. Moustaki and M. Knott, Weighting for item non-response in attitude scales by using latent variable models withcovariates, J. R. Statist. Soc. Ser. A 163 (2000), pp. 445-459.
    • (2000) J. R. Statist. Soc. Ser. A , vol.163 , pp. 445-459
    • Moustaki, I.1    Knott, M.2
  • 4
    • 0033235243 scopus 로고    scopus 로고
    • Factor analysis of multidimensional polytomous item response data suffering fromignorable item nonresponse
    • C.A. Bernaards and K. Sijtsma, Factor analysis of multidimensional polytomous item response data suffering fromignorable item nonresponse, Multivariate Behav. Res. 34(3) (1999), pp. 277-313.
    • (1999) Multivariate Behav. Res. , vol.34 , Issue.3 , pp. 277-313
    • Bernaards, C.A.1    Sijtsma, K.2
  • 5
    • 0034408110 scopus 로고    scopus 로고
    • Influence of imputation and EM methods on factor analysis when item nonresponsein questionnaire data is nonignorable
    • C.A. Bernaards and K. Sijtsma, Influence of imputation and EM methods on factor analysis when item nonresponsein questionnaire data is nonignorable, Multivariate Behav. Res. 35(3) (2000), pp. 321-364.
    • (2000) Multivariate Behav. Res. , vol.35 , Issue.3 , pp. 321-364
    • Bernaards, C.A.1    Sijtsma, K.2
  • 6
    • 20744447030 scopus 로고    scopus 로고
    • Modelling non-ignorable missing-data mechanism with item response theory models
    • R. Holman and C.A.W. Glas, Modelling non-ignorable missing-data mechanism with item response theory models, British J. Math. Statist. Psych. 58 (2005), pp. 1-18.
    • (2005) British J. Math. Statist. Psych. , vol.58 , pp. 1-18
    • Holman, R.1    Glas, C.A.W.2
  • 8
    • 0001248506 scopus 로고
    • Bayesian estimation of normal ogive item response functions using Gibbs sampling
    • J.H. Albert, Bayesian estimation of normal ogive item response functions using Gibbs sampling, J. Educ. Statist. 17 (1992), pp. 251-269.
    • (1992) J. Educ. Statist. , vol.17 , pp. 251-269
    • Albert, J.H.1
  • 10
    • 0033411905 scopus 로고    scopus 로고
    • Applications and extensions of MCMC in IRT: Multiple item types, missing data, andrated responses
    • R.J. Patz and B.W. Junker, Applications and extensions of MCMC in IRT: Multiple item types, missing data, andrated responses, J. Educ. Behav. Stat. 24 (1999), pp. 146-178.
    • (1999) J. Educ. Behav. Stat. , vol.24 , pp. 146-178
    • Patz, R.J.1    Junker, B.W.2
  • 11
    • 0036289272 scopus 로고    scopus 로고
    • Bayesian estimation and model choice in item response models
    • S.K. Sahu, Bayesian estimation and model choice in item response models, J. Stat. Comput. Simul. 72 (2002), pp. 217-232.
    • (2002) J. Stat. Comput. Simul. , vol.72 , pp. 217-232
    • Sahu, S.K.1
  • 12
    • 0002723397 scopus 로고
    • Estimation of latent ability using a response pattern of graded scores
    • F. Samejima, Estimation of latent ability using a response pattern of graded scores, Psychometrika Monogr. Suppl. 34(4) (1969), pp. 100-114.
    • (1969) Psychometrika Monogr. Suppl. , vol.34 , Issue.4 , pp. 100-114
    • Samejima, F.1
  • 13
    • 0002251164 scopus 로고    scopus 로고
    • A linear logistic multidimensional model for dichotomous item response data
    • in, W.J. van der Linden and R.K. Hambleton, eds., Springer, NewYork
    • M.D. Reckase,A linear logistic multidimensional model for dichotomous item response data, inHandbook of ModernItem Response Theory, W.J. van der Linden and R.K. Hambleton, eds., Springer, NewYork, 1997, pp. 271-286.
    • (1997) Handbook of ModernItem Response Theory , pp. 271-286
    • Reckase, M.D.1
  • 14
    • 84992784501 scopus 로고    scopus 로고
    • Developments in multidimensional item response theory
    • T.A. Ackerman, Developments in multidimensional item response theory, Appl. Psychol. Meas. 20 (1996), pp. 309-310.
    • (1996) Appl. Psychol. Meas. , vol.20 , pp. 309-310
    • Ackerman, T.A.1
  • 16
    • 0035543525 scopus 로고    scopus 로고
    • MCMC estimation and some model-fit analysis of multidimensional IRT models
    • A.A. Béguin and C.A.W. Glas, MCMC estimation and some model-fit analysis of multidimensional IRT models, Psychometrika 66 (2001), pp. 541-562.
    • (2001) Psychometrika , vol.66 , pp. 541-562
    • Béguin, A.A.1    Glas, C.A.W.2
  • 17
    • 84950453304 scopus 로고
    • Sampling based approaches to calculating marginal densities
    • A.E. Gelfand and A.F.M. Smith, Sampling based approaches to calculating marginal densities. J. Amer. Statist.Assoc. 85 (1990), pp. 398-409.
    • (1990) J. Amer. Statist.Assoc. , vol.85 , pp. 398-409
    • Gelfand, A.E.1    Smith, A.F.M.2
  • 18
    • 84972492387 scopus 로고
    • Inference from iterative simulation using multiple sequences (with discussion)
    • A. Gelman and D.B. Rubin, Inference from iterative simulation using multiple sequences (with discussion), Statist.Sci. 7 (1992), pp. 457-511.
    • (1992) Statist.Sci. , vol.7 , pp. 457-511
    • Gelman, A.1    Rubin, D.B.2
  • 19
    • 0001582213 scopus 로고    scopus 로고
    • Inference and monitoring convergence
    • in, W.R. Gilks, S. Richardson and D.T. Spiegelhalter, eds., Chapman and Hall, London
    • A. Gelman, Inference and monitoring convergence, in Markov Chain Monte Carlo in Practice, W.R. Gilks, S. Richardson and D.T. Spiegelhalter, eds., Chapman and Hall, London, 1996, pp. 131-143.
    • (1996) Markov Chain Monte Carlo in Practice , pp. 131-143
    • Gelman, A.1
  • 20
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm (withdiscussion)
    • A.P. Dempster, N.M. Laird, and D.B. Rubin, Maximum likelihood from incomplete data via the EM algorithm (withdiscussion), J. R. Statist. Soc. Ser. B 39 (1977), pp. 1-38.
    • (1977) J. R. Statist. Soc. Ser. B , vol.39 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 21
    • 18244387717 scopus 로고    scopus 로고
    • The EM algorithm-an old folk-song sung to a fast new tune
    • X.L. Meng and D. van Dyk, The EM algorithm-an old folk-song sung to a fast new tune, J. R. Statist. Soc. Ser. B59 (1997), pp. 511-540.
    • (1997) J. R. Statist. Soc. Ser. , vol.B59 , pp. 511-540
    • Meng, X.L.1    van Dyk, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.