메뉴 건너뛰기




Volumn 1, Issue 20, 2010, Pages 3122-3127

High-level Ab initio electronic structure calculations of water clusters (H2O)16 and (H2O)17: A new global minimum for (H2O)16

Author keywords

[No Author keywords available]

Indexed keywords

AB-INITIO ELECTRONIC STRUCTURE CALCULATIONS; CCSD; CCSD CALCULATIONS; COORDINATED WATER; GLOBAL MINIMA; GLOBAL MINIMUM STRUCTURE; LOWEST ENERGY STRUCTURE; MINIMUM-ENERGY STRUCTURES; MP2 LEVELS; RELATIVE STABILITIES; SPHERICAL CLUSTERS; WATER CLUSTER; ZERO-POINT ENERGY CORRECTION;

EID: 77958466534     PISSN: None     EISSN: 19487185     Source Type: Journal    
DOI: 10.1021/jz101245s     Document Type: Article
Times cited : (165)

References (57)
  • 2
    • 0342579116 scopus 로고
    • Chemical Bonding in Water Clusters
    • Lee, C.; Chen, H.; Fitzgerald, G. Chemical Bonding in Water Clusters J. Chem. Phys. 1995, 122, 1266
    • (1995) J. Chem. Phys. , vol.122 , pp. 1266
    • Lee, C.1    Chen, H.2    Fitzgerald, G.3
  • 3
    • 0001128874 scopus 로고    scopus 로고
    • A Study of Water Clusters Using the Effective Fragment Potential and Monte Carlo Simulated Annealing
    • Day, P. N.; Pachter, R.; Gordon, M. S.; Merrill, G. N. A Study of Water Clusters Using the Effective Fragment Potential and Monte Carlo Simulated Annealing J. Chem. Phys. 2000, 113, 5037
    • (2000) J. Chem. Phys. , vol.113 , pp. 5037
    • Day, P.N.1    Pachter, R.2    Gordon, M.S.3    Merrill, G.N.4
  • 4
    • 0034275042 scopus 로고    scopus 로고
    • Ice Nanotube: What Does the Unit Cell Look Like?
    • Koga, K.; Parra, R. D.; Tanaka, H.; Zeng, X. C. Ice Nanotube: What Does the Unit Cell Look Like? J. Chem. Phys. 2000, 113, 5037.
    • (2000) J. Chem. Phys. , vol.113 , pp. 5037
    • Koga, K.1    Parra, R.D.2    Tanaka, H.3    Zeng, X.C.4
  • 5
    • 0035933485 scopus 로고    scopus 로고
    • Structures, Energies, and Vibrational Spectra of Water Undecamer and Dodecamer: An Ab Initio Study
    • Lee, H. M.; Shu, S. B.; Kim, K. S. Structures, Energies, and Vibrational Spectra of Water Undecamer and Dodecamer: An Ab Initio Study J. Chem. Phys. 2001, 114, 10749
    • (2001) J. Chem. Phys. , vol.114 , pp. 10749
    • Lee, H.M.1    Shu, S.B.2    Kim, K.S.3
  • 8
    • 4344583474 scopus 로고    scopus 로고
    • 20. I. Estimates of MP2/CBS Binding Energies and Comparison with Empirical Potentials
    • 20. I. Estimates of MP2/CBS Binding Energies and Comparison with Empirical Potentials J. Chem. Phys. 2004, 121, 2655
    • (2004) J. Chem. Phys. , vol.121 , pp. 2655
    • Fanourgakis, G.S.1    Aprà, E.2    Xantheas, S.S.3
  • 9
    • 24144490013 scopus 로고    scopus 로고
    • 20. II. Spectroscopic Signatures of the Dodecahedron, Fused Cubes, Face-Sharing Pentagonal Prisms, and Edge-Sharing Pentagonal Prisms Hydrogen Bonding Networks
    • 20. II. Spectroscopic Signatures of the Dodecahedron, Fused Cubes, Face-Sharing Pentagonal Prisms, and Edge-Sharing Pentagonal Prisms Hydrogen Bonding Networks J. Chem. Phys. 2005, 122, 134304
    • (2005) J. Chem. Phys. , vol.122 , pp. 134304
    • Fanourgakis, G.S.1    Aprà, E.2    De Jong, W.A.3    Xantheas, S.S.4
  • 10
    • 21444452155 scopus 로고    scopus 로고
    • The Spectroscopic Signature of the "all-Surface" to "internally Solvated" Structural Transition in Water Clusters in the n = 17-21 Size Regime
    • Lagutchenkov, A.; Fanourgakis, G. S.; Niedner-Schatteburg, G.; Xantheas, S. S. The Spectroscopic Signature of the "All-Surface" to "Internally Solvated" Structural Transition in Water Clusters in the n = 17-21 Size Regime J. Chem. Phys. 2005, 122, 194310
    • (2005) J. Chem. Phys. , vol.122 , pp. 194310
    • Lagutchenkov, A.1    Fanourgakis, G.S.2    Niedner-Schatteburg, G.3    Xantheas, S.S.4
  • 12
    • 0037243327 scopus 로고    scopus 로고
    • Size-Dependent Transition from All-Surface to Interior-Molecule Structures in Pure Neutral Water Clusters
    • Hartke, B. Size-Dependent Transition from All-Surface to Interior-Molecule Structures in Pure Neutral Water Clusters Phys. Chem. Chem. Phys. 2003, 5, 275
    • (2003) Phys. Chem. Chem. Phys. , vol.5 , pp. 275
    • Hartke, B.1
  • 13
    • 0037154358 scopus 로고    scopus 로고
    • Development of Transferable Interaction Models for Water. I. Prominent Features of the Water Dimer Potential Energy Surface
    • Burnham, C. J.; Xantheas, S. S. Development of Transferable Interaction Models for Water. I. Prominent Features of the Water Dimer Potential Energy Surface J. Chem. Phys. 2002, 116, 1479
    • (2002) J. Chem. Phys. , vol.116 , pp. 1479
    • Burnham, C.J.1    Xantheas, S.S.2
  • 14
    • 33645689578 scopus 로고    scopus 로고
    • The Flexible, Polarizable, Thole-Type Interaction Potential for Water (TTM2-F) Revisited
    • Fanourgakis, G. S.; Xantheas, S. S. The Flexible, Polarizable, Thole-Type Interaction Potential for Water (TTM2-F) Revisited J. Phys. Chem. A 2006, 110, 4100
    • (2006) J. Phys. Chem. A , vol.110 , pp. 4100
    • Fanourgakis, G.S.1    Xantheas, S.S.2
  • 15
    • 39749138302 scopus 로고    scopus 로고
    • Development of Transferable Interaction Potentials for Water. V. Extension of the Flexible, Polarizable, Thole-Type Model Potential (TTM3-F, v. 3.0) to Describe the Vibrational Spectra of Water Clusters and Liquid Water
    • Fanourgakis, G. S.; Xantheas, S. S. Development of Transferable Interaction Potentials for Water. V. Extension of the Flexible, Polarizable, Thole-Type Model Potential (TTM3-F, v. 3.0) to Describe the Vibrational Spectra of Water Clusters and Liquid Water J. Chem. Phys. 2008, 128, 074506
    • (2008) J. Chem. Phys. , vol.128 , pp. 074506
    • Fanourgakis, G.S.1    Xantheas, S.S.2
  • 18
    • 0000651116 scopus 로고    scopus 로고
    • Molecular Dynamics Study of Water Clusters, Liquid, and Liquid-Vapor Interface of Water with Many-Body Potentials
    • Dang, L. X.; Chang, T. M. Molecular Dynamics Study of Water Clusters, Liquid, and Liquid-Vapor Interface of Water with Many-Body Potentials J. Chem. Phys. 1997, 106, 8149
    • (1997) J. Chem. Phys. , vol.106 , pp. 8149
    • Dang, L.X.1    Chang, T.M.2
  • 19
    • 0000020246 scopus 로고    scopus 로고
    • A Five-Site Model for Liquid Water and the Reproduction of the Density Anomaly by Rigid, Nonpolarizable Potential Functions
    • Mahoeny, M. W.; Jorgensen, W. L. A Five-Site Model for Liquid Water and the Reproduction of the Density Anomaly by Rigid, Nonpolarizable Potential Functions J. Chem. Phys. 2000, 112, 8910
    • (2000) J. Chem. Phys. , vol.112 , pp. 8910
    • Mahoeny, M.W.1    Jorgensen, W.L.2
  • 21
    • 0000485819 scopus 로고    scopus 로고
    • An Approximate Formula for the Intermolecular Pauli Repulsion between Closed Shell Molecules. II. Application to the Effective Fragment Potential Method
    • Jensen, J. H.; Gordon, M. S. An Approximate Formula for the Intermolecular Pauli Repulsion between Closed Shell Molecules. II. Application to the Effective Fragment Potential Method J. Chem. Phys. 1998, 108, 4772
    • (1998) J. Chem. Phys. , vol.108 , pp. 4772
    • Jensen, J.H.1    Gordon, M.S.2
  • 22
    • 0035138053 scopus 로고    scopus 로고
    • The Effective Fragment Potential Method: A QM-based MM aproach to Modeling Environmental Effects in Chemistry
    • Gordon, M. S.; Freitag, M. A.; Bandyopadhyay, P.; Jensen, J. H.; Kairys, V.; Stevens, W. J. The Effective Fragment Potential Method: A QM-based MM aproach to Modeling Environmental Effects in Chemistry J. Phys. Chem. A 2001, 105, 293
    • (2001) J. Phys. Chem. A , vol.105 , pp. 293
    • Gordon, M.S.1    Freitag, M.A.2    Bandyopadhyay, P.3    Jensen, J.H.4    Kairys, V.5    Stevens, W.J.6
  • 23
    • 0037961695 scopus 로고    scopus 로고
    • Density Functional Theory Based Effective Fragment Potential Method
    • Adamovic, I.; Freitag, M. A.; Gordon, M. S. Density Functional Theory Based Effective Fragment Potential Method J. Chem. Phys. 2003, 118, 6725
    • (2003) J. Chem. Phys. , vol.118 , pp. 6725
    • Adamovic, I.1    Freitag, M.A.2    Gordon, M.S.3
  • 24
    • 4344679514 scopus 로고    scopus 로고
    • The Effective Fragment Potential: Small Clusters and Radial Distribution Functions
    • Netzloff, H. M.; Gordon, M. S. The Effective Fragment Potential: Small Clusters and Radial Distribution Functions J. Chem. Phys. 2004, 121, 2711
    • (2004) J. Chem. Phys. , vol.121 , pp. 2711
    • Netzloff, H.M.1    Gordon, M.S.2
  • 25
    • 33748511534 scopus 로고    scopus 로고
    • Intermolecular Interactions via Perturbation Theory: From Diatoms to Biomolecules
    • Szalewicz, K.; Patchkovski, K.; Jeziorski, B. Intermolecular Interactions via Perturbation Theory: From Diatoms to Biomolecules Struct. Bonding (Berlin, Ger.) 2005, 116, 43
    • (2005) Struct. Bonding (Berlin, Ger.) , vol.116 , pp. 43
    • Szalewicz, K.1    Patchkovski, K.2    Jeziorski, B.3
  • 27
    • 72149094875 scopus 로고    scopus 로고
    • Towards the Complete Understanding of Water by a First-Principles Computational Approach
    • Szalewicz, K.; Leforestier, C.; van der Avoird, A. Towards the Complete Understanding of Water by a First-Principles Computational Approach Chem. Phys. Lett. 2009, 482, 1
    • (2009) Chem. Phys. Lett. , vol.482 , pp. 1
    • Szalewicz, K.1    Leforestier, C.2    Van Der Avoird, A.3
  • 28
    • 0037154363 scopus 로고    scopus 로고
    • Development of Transferable Interaction Models for Water. II. Accurate Energetics of the First Few Water Clusters from First Principles
    • Xantheas, S. S.; Burnham, C. J.; Harrison, R. J. Development of Transferable Interaction Models for Water. II. Accurate Energetics of the First Few Water Clusters from First Principles J. Chem. Phys. 2002, 116, 1493
    • (2002) J. Chem. Phys. , vol.116 , pp. 1493
    • Xantheas, S.S.1    Burnham, C.J.2    Harrison, R.J.3
  • 29
    • 0842290015 scopus 로고    scopus 로고
    • The Binding Energies of the D2d and S4 Water Octamer Isomers: High-Level Electronic Structure and Empirical Potential Results
    • Xantheas, S. S.; Aprà, E. The Binding Energies of the D2d and S4 Water Octamer Isomers: High-Level Electronic Structure and Empirical Potential Results J. Chem. Phys. 2004, 120, 823
    • (2004) J. Chem. Phys. , vol.120 , pp. 823
    • Xantheas, S.S.1    Aprà, E.2
  • 30
    • 64849103650 scopus 로고    scopus 로고
    • CCSD(T) Complete Basis Set Limit Relative Energies for Low-Lying Water Hexamer Structures
    • Bates, D. M.; Tschumper, G. S. CCSD(T) Complete Basis Set Limit Relative Energies for Low-Lying Water Hexamer Structures J. Phys. Chem. A 2009, 113, 3555
    • (2009) J. Phys. Chem. A , vol.113 , pp. 3555
    • Bates, D.M.1    Tschumper, G.S.2
  • 32
    • 0347400933 scopus 로고
    • n, n = 1,6. I. Optimal Geometries and Vibrational Spectra
    • n, n = 1,6. I. Optimal Geometries and Vibrational Spectra J. Chem. Phys. 1993, 99, 8774
    • (1993) J. Chem. Phys. , vol.99 , pp. 8774
    • Xantheas, S.S.1    Dunning, T.H.J.2
  • 33
    • 28244441336 scopus 로고    scopus 로고
    • On the Importance of the Fragment Relaxation Energy Terms in the Estimation of the Basis Set Superposition Error (BSSE) Correction to the Intermolecular Interaction Energy
    • Xantheas, S. S. On the Importance of the Fragment Relaxation Energy Terms in the Estimation of the Basis Set Superposition Error (BSSE) Correction to the Intermolecular Interaction Energy J. Chem. Phys. 1996, 104, 8821
    • (1996) J. Chem. Phys. , vol.104 , pp. 8821
    • Xantheas, S.S.1
  • 34
    • 0034662896 scopus 로고    scopus 로고
    • Cooperativity and Hydrogen Bonding Network in Water Clusters
    • Xantheas, S. S. Cooperativity and Hydrogen Bonding Network in Water Clusters Chem. Phys. 2000, 258, 225
    • (2000) Chem. Phys. , vol.258 , pp. 225
    • Xantheas, S.S.1
  • 35
    • 48749089456 scopus 로고    scopus 로고
    • Identifying the Most Stable Networks in Polyhedral Water Clusters
    • Kirov, M. V.; Fanourgakis, G. S.; Xantheas, S. S. Identifying the Most Stable Networks in Polyhedral Water Clusters Chem. Phys. Lett. 2008, 461, 108
    • (2008) Chem. Phys. Lett. , vol.461 , pp. 108
    • Kirov, M.V.1    Fanourgakis, G.S.2    Xantheas, S.S.3
  • 36
    • 67650519354 scopus 로고    scopus 로고
    • 24 Cluster and Their Use in Constructing Periodic Unit Cells of the Structure i (sI) Hydrate Lattice
    • 24 Cluster and Their Use in Constructing Periodic Unit Cells of the Structure I (sI) Hydrate Lattice J. Am. Chem. Soc. 2009, 131, 7564
    • (2009) J. Am. Chem. Soc. , vol.131 , pp. 7564
    • Yoo, S.1    Kirov, M.V.2    Xantheas, S.S.3
  • 37
    • 6944251055 scopus 로고
    • Note on an Approximation Treatment for Many-Electron Systems
    • Møller, C.; Plesset, M. S. Note on an Approximation Treatment for Many-Electron Systems Phys. Rev. 1934, 46, 618
    • (1934) Phys. Rev. , vol.46 , pp. 618
    • Møller, C.1    Plesset, M.S.2
  • 39
    • 84987067867 scopus 로고
    • Simplifications in the Generation and Transformation of Two-Electron Integrals in Molecular Calculations
    • Beebe, N. H. F.; Linderberg, J. Simplifications in the Generation and Transformation of Two-Electron Integrals in Molecular Calculations Int. J. Quantum Chem. 1977, 12, 683
    • (1977) Int. J. Quantum Chem. , vol.12 , pp. 683
    • Beebe, N.H.F.1    Linderberg, J.2
  • 40
    • 17744419499 scopus 로고    scopus 로고
    • Size-Intensive Decomposition of Orbital Energy Denominators
    • Koch, H.; de Merás, A. S. Size-Intensive Decomposition of Orbital Energy Denominators J. Chem. Phys. 2000, 113, 508
    • (2000) J. Chem. Phys. , vol.113 , pp. 508
    • Koch, H.1    De Merás, A.S.2
  • 41
    • 0038341010 scopus 로고    scopus 로고
    • Reduced Scaling in Electronic Structure Calculations using Cholesky Decompositions
    • Koch, H.; de Merás, A. S.; Pedersen, T. B. Reduced Scaling in Electronic Structure Calculations using Cholesky Decompositions J. Chem. Phys. 2003, 118, 9481
    • (2003) J. Chem. Phys. , vol.118 , pp. 9481
    • Koch, H.1    De Merás, A.S.2    Pedersen, T.B.3
  • 42
    • 77958084397 scopus 로고    scopus 로고
    • The CCSD(T) Model with Cholesky Decomposition of Orbital Energy Denominators
    • [Online early access]. DOI: 10.1002/qua.22582
    • Cacheiro, J. L.; Pedersen, T. B.; Fernández, B.; de Merás, A. S.; Koch, H. The CCSD(T) Model with Cholesky Decomposition of Orbital Energy Denominators. Int. J. Quantum Chem. [Online early access]. DOI: 10.1002/qua.22582.
    • Int. J. Quantum Chem.
    • Cacheiro, J.L.1    Pedersen, T.B.2    Fernández, B.3    De Merás, A.S.4    Koch, H.5
  • 43
    • 0037576213 scopus 로고    scopus 로고
    • Low-Order Scaling Local Electron Correlation Methods. III. Linear Scaling Local Perturbative Triples Correction (T)
    • Schuötz, M. Low-Order Scaling Local Electron Correlation Methods. III. Linear Scaling Local Perturbative Triples Correction (T) J. Chem. Phys. 2000, 113, 9986
    • (2000) J. Chem. Phys. , vol.113 , pp. 9986
    • Schuötz, M.1
  • 44
    • 0037618360 scopus 로고    scopus 로고
    • Low-Order Scaling Local Electron Correlation Methods. IV. Linear-Scaling Local Coupled-Cluster (LCCSD)
    • Schuötz, M.; Werner, H.-J. Low-Order Scaling Local Electron Correlation Methods. IV. Linear-Scaling Local Coupled-Cluster (LCCSD) J. Chem. Phys. 2001, 114, 661
    • (2001) J. Chem. Phys. , vol.114 , pp. 661
    • Schuötz, M.1    Werner, H.-J.2
  • 45
    • 0037157291 scopus 로고    scopus 로고
    • Low-Order Scaling Local Electron Correlation Methods. V. Connected Triples beyond (T): Linear Scaling Local CCSDT-1b
    • Schuötz, M. Low-Order Scaling Local Electron Correlation Methods. V. Connected Triples beyond (T): Linear Scaling Local CCSDT-1b J. Chem. Phys. 2002, 116, 8772
    • (2002) J. Chem. Phys. , vol.116 , pp. 8772
    • Schuötz, M.1
  • 46
    • 72949117831 scopus 로고    scopus 로고
    • Local Correlation Calculations using Standard and Renormalized Coupled-Cluster Approaches
    • Li, W.; Piecuch, P.; Gour, J. R.; Li, S. Local Correlation Calculations using Standard and Renormalized Coupled-Cluster Approaches J. Chem. Phys. 2009, 131, 114109
    • (2009) J. Chem. Phys. , vol.131 , pp. 114109
    • Li, W.1    Piecuch, P.2    Gour, J.R.3    Li, S.4
  • 47
    • 22844439181 scopus 로고    scopus 로고
    • Implementation of the Locally Renormalized CCSD(T) Approaches for Arbitrary Reference Function
    • Kowalski, K. Implementation of the Locally Renormalized CCSD(T) Approaches for Arbitrary Reference Function J. Chem. Phys. 2005, 123, 014102
    • (2005) J. Chem. Phys. , vol.123 , pp. 014102
    • Kowalski, K.1
  • 48
    • 0001260286 scopus 로고    scopus 로고
    • Local Treatment of Electron Correlation in Coupled Cluster Theory
    • Hampel, C.; Werner, H.-J. Local Treatment of Electron Correlation in Coupled Cluster Theory J. Chem. Phys. 1996, 104, 6286
    • (1996) J. Chem. Phys. , vol.104 , pp. 6286
    • Hampel, C.1    Werner, H.-J.2
  • 49
    • 2942692078 scopus 로고    scopus 로고
    • Minima Hopping: An Efficient Search Method for the Global Minimum of the Potential Energy Surface of Complex Molecular Systems
    • Goedecker, S. Minima Hopping: An Efficient Search Method for the Global Minimum of the Potential Energy Surface of Complex Molecular Systems J. Chem. Phys. 2004, 120, 9911
    • (2004) J. Chem. Phys. , vol.120 , pp. 9911
    • Goedecker, S.1
  • 50
    • 33746614482 scopus 로고
    • Gaussian Basis Sets for Use in Correlated Molecular Calculations. I. The Atoms Boron through Neon and Hydrogen
    • Dunning, T. H., Jr. Gaussian Basis Sets for Use in Correlated Molecular Calculations. I. The Atoms Boron through Neon and Hydrogen J. Chem. Phys. 1989, 90, 1007
    • (1989) J. Chem. Phys. , vol.90 , pp. 1007
    • Dunning Jr., T.H.1
  • 51
    • 4143095330 scopus 로고
    • Electron Affinities of the First-Row Atoms Revisited. Systematic Basis Sets and Wave Functions
    • Kendall, R. A.; Dunning, T. H., Jr.; Harrison, R. J. Electron Affinities of the First-Row Atoms Revisited. Systematic Basis Sets and Wave Functions J. Chem. Phys. 1992, 96, 6796
    • (1992) J. Chem. Phys. , vol.96 , pp. 6796
    • Kendall, R.A.1    Dunning Jr., T.H.2    Harrison, R.J.3
  • 52
    • 36849099976 scopus 로고
    • On the Correlation Problem in Atomic and Molecular Systems. Calculation of Wavefunction Components in Ursell-Type Expansion Using Quantum-Field Theoretical Methods
    • Cizek, J. On the Correlation Problem in Atomic and Molecular Systems. Calculation of Wavefunction Components in Ursell-Type Expansion Using Quantum-Field Theoretical Methods J. Chem. Phys. 1966, 45, 4256
    • (1966) J. Chem. Phys. , vol.45 , pp. 4256
    • Cizek, J.1
  • 53
    • 33847389465 scopus 로고    scopus 로고
    • Coupled-Cluster Theory in Quantum Chemistry
    • Bartlett, R. J.; Musial, M. Coupled-Cluster Theory in Quantum Chemistry Rev. Mod. Phys. 2007, 79, 291
    • (2007) Rev. Mod. Phys. , vol.79 , pp. 291
    • Bartlett, R.J.1    Musial, M.2
  • 57
    • 0037155383 scopus 로고    scopus 로고
    • Understanding the Sensitivity of Nucleation Kinetics: A Case Study on Water
    • Kathmann, S. M.; Schenter, G. K.; Garrett, B. C. Understanding the Sensitivity of Nucleation Kinetics: A Case Study on Water J. Chem. Phys. 2002, 116, 5046-5057
    • (2002) J. Chem. Phys. , vol.116 , pp. 5046-5057
    • Kathmann, S.M.1    Schenter, G.K.2    Garrett, B.C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.