-
1
-
-
0020800507
-
A note on the accuracy of the mild-slope equation
-
Booij N. A note on the accuracy of the mild-slope equation. Coast. Eng. 1983, 7(3):191-203.
-
(1983)
Coast. Eng.
, vol.7
, Issue.3
, pp. 191-203
-
-
Booij, N.1
-
2
-
-
34250417406
-
On the Hamiltonian theory of surface waves
-
Broer L.J.F. On the Hamiltonian theory of surface waves. Appl. Sci. Res. 1974, 29:430-446.
-
(1974)
Appl. Sci. Res.
, vol.29
, pp. 430-446
-
-
Broer, L.J.F.1
-
3
-
-
0028976666
-
The modified mild-slope equation
-
Chamberlain P.G., Porter D. The modified mild-slope equation. J. Fluid Mech. 1995, 291:393-407.
-
(1995)
J. Fluid Mech.
, vol.291
, pp. 393-407
-
-
Chamberlain, P.G.1
Porter, D.2
-
4
-
-
77958100727
-
-
Surface wave propagation over an uneven bottom; evaluation of two-dimensional horizontal wave propagation models, Tech. rep., Delft Hydraulics, Delft, The Netherlands, W301 partand 70 figures
-
M.W. Dingemans, Surface wave propagation over an uneven bottom; evaluation of two-dimensional horizontal wave propagation models, Tech. rep., Delft Hydraulics, Delft, The Netherlands, W301 part 5, 117 pp. and 70 figures (1985).
-
(1985)
, vol.5
, pp. 117
-
-
Dingemans, M.W.1
-
5
-
-
0002909803
-
Water wave propagation over uneven bottoms
-
World Scientific, Singapore
-
Dingemans M.W. Water wave propagation over uneven bottoms. Adv. Ser. on Ocean Eng. 1997, 13. World Scientific, Singapore.
-
(1997)
Adv. Ser. on Ocean Eng.
, vol.13
-
-
Dingemans, M.W.1
-
7
-
-
77958098688
-
A variational model for fully non-linear water waves of Boussinesq type
-
Klopman G., Dingemans M.W., van Groesen E. A variational model for fully non-linear water waves of Boussinesq type. Proc. 20th Int. Workshop on Water Waves and Floating Bodies, Longyearbyen, Spitsbergen, Norway, May 2005 2005.
-
(2005)
Proc. 20th Int. Workshop on Water Waves and Floating Bodies, Longyearbyen, Spitsbergen, Norway, May 2005
-
-
Klopman, G.1
Dingemans, M.W.2
van Groesen, E.3
-
8
-
-
77957116833
-
A variational approach to Boussinesq modelling of fully non-linear water waves
-
Klopman G., van Groesen E., Dingemans M.W. A variational approach to Boussinesq modelling of fully non-linear water waves. J. Fluid Mech. 2010, 657:36-63.
-
(2010)
J. Fluid Mech.
, vol.657
, pp. 36-63
-
-
Klopman, G.1
van Groesen, E.2
Dingemans, M.W.3
-
9
-
-
33645878917
-
A Boussinesq-type method for fully nonlinear waves interacting with a rapidly varying bathymetry
-
Madsen P.A., Fuhrman D.R., Wang B. A Boussinesq-type method for fully nonlinear waves interacting with a rapidly varying bathymetry. Coast. Eng. 2006, 53(5-6):487-504.
-
(2006)
Coast. Eng.
, vol.53
, Issue.5-6
, pp. 487-504
-
-
Madsen, P.A.1
Fuhrman, D.R.2
Wang, B.3
-
10
-
-
0014571787
-
Scattering of surface waves by rectangular obstacles in waters of finite depth
-
Mei C.C., Black J.L. Scattering of surface waves by rectangular obstacles in waters of finite depth. J. Fluid Mech. 1969, 38(3):499-511.
-
(1969)
J. Fluid Mech.
, vol.38
, Issue.3
, pp. 499-511
-
-
Mei, C.C.1
Black, J.L.2
-
11
-
-
84974144443
-
On Hamilton's principle for surface waves
-
Miles J.W. On Hamilton's principle for surface waves. J. Fluid Mech. 1977, 83(1):153-158.
-
(1977)
J. Fluid Mech.
, vol.83
, Issue.1
, pp. 153-158
-
-
Miles, J.W.1
-
12
-
-
0030644155
-
Linear wave scattering by two-dimensional topography
-
Gravity Waves in Water of Finite Depth
-
Porter D., Chamberlain P.G. Linear wave scattering by two-dimensional topography. Adv. Fluid Mech., Comput. Mech. Publ. 1997, vol. 10:13-53.
-
(1997)
Adv. Fluid Mech., Comput. Mech. Publ.
, vol.10
, pp. 13-53
-
-
Porter, D.1
Chamberlain, P.G.2
-
13
-
-
33749039990
-
Approximations to the scattering of water waves by steep topography
-
Porter R., Porter D. Approximations to the scattering of water waves by steep topography. J. Fluid Mech. 2006, 562:279-302.
-
(2006)
J. Fluid Mech.
, vol.562
, pp. 279-302
-
-
Porter, R.1
Porter, D.2
-
14
-
-
0026805558
-
Propagation of surface gravity waves over a rectangular submerged bar
-
Rey V., Belzons M., Guazzelli E. Propagation of surface gravity waves over a rectangular submerged bar. J. Fluid Mech. 1992, 235:453-479.
-
(1992)
J. Fluid Mech.
, vol.235
, pp. 453-479
-
-
Rey, V.1
Belzons, M.2
Guazzelli, E.3
-
15
-
-
34250447917
-
Stability of periodic waves of finite amplitude on the surface of a deep fluid
-
(originally in: Zhurnal Prildadnoi Mekhaniki i Tekhnicheskoi Fiziki
-
Zakharov V.E. Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Techn. Phys. 1968, 9(2):190-194. (originally in: Zhurnal Prildadnoi Mekhaniki i Tekhnicheskoi Fiziki 9 (2), pp. 86-94, 1968).
-
(1968)
J. Appl. Mech. Techn. Phys.
, vol.9
, Issue.2
, pp. 190-194
-
-
Zakharov, V.E.1
|