-
1
-
-
0000636128
-
Sources and sinks separating domains of left-and right-traveling waves: Experiment versus amplitude equations
-
R. Alvarez, M. van Heoke, and W. van SAARLOOS, Sources and sinks separating domains of left-and right-traveling waves: Experiment versus amplitude equations, Phys. Rev. E, 56 (1997), pp. R1306- R1309.
-
(1997)
Phys. Rev. E
, vol.56
-
-
Alvarez, R.1
Van Heoke, M.2
Van Saarloos, W.3
-
2
-
-
0036013603
-
The world of the complex ginzburg-landau equation
-
I. S. ARANSON and L. Kramer, The world of the complex Ginzburg-Landau equation, Rev. Modern Phys., 74 (2002), pp. 99-143.
-
(2002)
Rev. Modern Phys.
, vol.74
, pp. 99-143
-
-
Aranson, I.S.1
Kramer, L.2
-
3
-
-
0031190503
-
The structure of spiral-domain patterns and shocks in the 2d complex ginzburg-landau equation
-
T. Bghr, G. Huber, and E. Ott, The structure of spiral-domain patterns and shocks in the 2D complex Ginzburg-Landau equation, Phys. D, 106 (1997), pp. 95-112.
-
(1997)
Phys. D
, vol.106
, pp. 95-112
-
-
Bghr, T.1
Huber, G.2
Ott, E.3
-
4
-
-
0037212936
-
Nonlinear analysis of the eckhaus instability: Modulated amplitude waves and phase chaos with nonzero average phase gradient
-
L. Brusgh, a. TORCINI, and M. Bär, Nonlinear analysis of the Eckhaus instability: Modulated amplitude waves and phase chaos with nonzero average phase gradient, Phys. D, 174 (2003), pp. 152-167.
-
(2003)
Phys. D
, vol.174
, pp. 152-167
-
-
Brusgh, L.1
Torcini, A.2
Bär, M.3
-
5
-
-
0035892848
-
Modulated amplitude waves and defect formation in the one-dimensional complex ginzburg-landau equation
-
L. Brusgh, A. TORCINI, M. van HECKE, M. G. Zimmermann, and M. Bär, Modulated amplitude waves and defect formation in the one-dimensional complex Ginzburg-Landau equation, Phys. D, 160 (2001), pp. 127-148.
-
(2001)
Phys. D
, vol.160
, pp. 127-148
-
-
Brusgh, L.1
Torcini, A.2
Van Hecke, M.3
Zimmermann, M.G.4
Bär, M.5
-
6
-
-
16744367712
-
Modulated amplitude waves and the transition from phase to defect chaos
-
L. Brusgh, M. G. Zimmermann, M. van HECKE, M. Bär, and A. TORCINI, Modulated amplitude waves and the transition from phase to defect chaos, Phys. Rev. Lett., 85 (2000), pp. 86-89.
-
(2000)
Phys. Rev. Lett.
, vol.85
, pp. 86-89
-
-
Brusgh, M.G.L.1
Zimmermann, M.2
Van Hecke, M.3
Bär, M.4
Torcini, A.5
-
7
-
-
0032614102
-
Bekki-nozaki amplitude holes in hydro- thermal nonlinear waves
-
J. Burguete, H.Chaté, F. Daviaud, and N. MUKOLOBWIEZ, Bekki-Nozaki amplitude holes in hydro- thermal nonlinear waves, Phys. Rev. Lett., 82 (1999), article 3252.
-
(1999)
Phys. Rev. Lett.
, vol.82
, pp. 3252
-
-
Burguete, J.1
Chaté, H.2
Daviaud, F.3
Mukolobwiez, N.4
-
8
-
-
33748335189
-
Spatiotemporal intermittency regimes of the one-dimensional complex ginzburg-landau equation
-
H. Chaté, Spatiotemporal intermittency regimes of the one-dimensional complex Ginzburg-Landau equation, Nonlinearity, 7 (1994), pp. 185-204.
-
(1994)
Nonlinearity
, vol.7
, pp. 185-204
-
-
Chaté, H.1
-
9
-
-
0000503173
-
Stability of the bekki-nozaki hole solutions to the one-dimensional complex ginzburg-landau equation
-
H. Chaté and P. Manneville, Stability of the Bekki-Nozaki hole solutions to the one-dimensional complex Ginzburg-Landau equation, Phys. Lett. A, 171 (1992), pp. 183-188.
-
(1992)
Phys. Lett. A
, vol.171
, pp. 183-188
-
-
Chaté, H.1
Manneville, P.2
-
10
-
-
34748918858
-
Sources and sinks in the vicinity of a weakly inverted instability
-
J. Cisternas and O. DESCALZI, Sources and sinks in the vicinity of a weakly inverted instability, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 17 (2007), pp. 2821-2826.
-
(2007)
Lnternat. J. Bifur. Chaos Appl. Sci. Engrg.
, vol.17
, pp. 2821-2826
-
-
Cisternas, J.1
Descalzi, O.2
-
11
-
-
0031223379
-
Nonlinear numerics
-
E. J. DOEDEL, Nonlinear numerics, J. Franklin Inst., 334 (1997), pp. 1049-1073.
-
(1997)
J. Franklin Inst.
, vol.334
, pp. 1049-1073
-
-
Doedel, E.J.1
-
12
-
-
0001755071
-
Auto, a program for the automatic bifurcation analysis of autonomous systems
-
E. J. DOEDEL, AUTO, A program for the automatic bifurcation analysis of autonomous systems, Congr. Numer., 30 (1981), pp. 265-384.
-
(1981)
Congr. Numer.
, vol.30
, pp. 265-384
-
-
Doedel, E.J.1
-
13
-
-
77958055560
-
Numerical continuation of branch points of equilibria and periodic orbits
-
E. J. Doedel, G. Domokos, and I. G. Kevrekidis, eds., World Scientific, River Edge, NJ
-
E. J. DOEDEL, W. Ggvaerts, Y. A. Kuznetsgv, and A. Dhggge, Numerical continuation of branch points of equilibria and periodic orbits, in Modelling and Computation in Dynamical Systems, E. J. Doedel, G. Domokos, and 1. G. Kevrekidis, eds., World Scientific, River Edge, NJ, 2006, pp. 145-164.
-
Modelling and Computation in Dynamical Systems
, pp. 145-164
-
-
Doedel, E.J.1
Ggvaerts, W.2
Kuznetsgv, Y.A.3
Dhggge, A.4
-
14
-
-
22244440233
-
Breaking the hidden symmetry in the ginzburg-landau equation
-
a. DOELMAN, Breaking the hidden symmetry in the Ginzburg-Landau equation, Phys. D, 97 (1996), pp. 398-428.
-
(1996)
Phys. D
, vol.97
, pp. 398-428
-
-
Doelman, A.1
-
15
-
-
0001505194
-
Transition fronts and localized structures in bistable reaction-diffusion equations
-
G. B. ERMENTROUT, X. Chen, and Z. Chen, Transition fronts and localized structures in bistable reaction-diffusion equations, Phys. D, 108 (1997), pp. 147-167.
-
(1997)
Phys. D
, vol.108
, pp. 147-167
-
-
Ermentrout, G.B.1
Chen, X.2
Chen, Z.3
-
16
-
-
12244269740
-
Dynamics of defects and travelling waves in an interfacial finger pattern
-
P. Habdas and J. R. DE Bruyn, Dynamics of defects and travelling waves in an interfacial finger pattern, Phys. D, 200 (2005), pp. 273-286.
-
(2005)
Phys. D
, vol.200
, pp. 273-286
-
-
Habdas, P.1
De Bruyn, J.R.2
-
17
-
-
0035364755
-
Behavior of sink and source defects in a one-dimensional traveling finger pattern
-
P. Habdas, M. J. Case, and J. R. de Bruyn, Behavior of sink and source defects in a one-dimensional traveling finger pattern, Phys. Rev. E, 63 (2001), article 066305.
-
(2001)
Phys. Rev. E
, vol.63
, pp. 066305
-
-
Habdas, P.1
Case, M.J.2
De Bruyn, J.R.3
-
18
-
-
0001811061
-
Odepack: A systematized collection of ode solvers
-
R. S. Stepleman, M. Carver, R. Peskin, W. F. Ames, and R. Vichnevetsky, eds., North-Holland, Amsterdam
-
A. C. Hindmarsh, ODEPACK: A systematized collection of ODE solvers, in Scientific Computing, R. S. Stepleman, M. Carver, R. Peskin, W. F. Ames, and R. Vichnevetsky, eds., North-Holland, Amsterdam, 1983, pp. 55-64.
-
(1983)
Scientific Computing
, pp. 55-64
-
-
Hindmarsh, A.C.1
-
19
-
-
42749102882
-
Hole-defect chaos in the one-dimensional complex ginzburg-landau equation
-
article 026213
-
M. Howard and M. van Heoke, Hole-defect chaos in the one-dimensional complex Ginzburg-Landau equation, Phys. Rev. E, 68 (2003), article 026213.
-
(2003)
Phys. Rev. E
, vol.68
-
-
Howard, M.1
Van Heoke, M.2
-
20
-
-
44049121326
-
The eckhaus instability for traveling waves
-
B. Janiaud, a. Pumir, D. Bensimon, V. Croquette, H. Richter, and L. Kramer, The Eckhaus instability for traveling waves, Phys. D, 55 (1992), pp. 269-286.
-
(1992)
Phys. D
, vol.55
, pp. 269-286
-
-
Janiaud, B.1
Pumir, A.2
Bensimon, D.3
Croquette, V.4
Richter, H.5
Kramer, L.6
-
21
-
-
0001969945
-
Existence and stability of singular heteroclinic orbits for the ginzburg-landau equation
-
T. Kafitula, Existence and stability of singular heteroclinic orbits for the Ginzburg-Landau equation, Nonlinearity, 9 (1996), pp. 669-685.
-
(1996)
Nonlinearity
, vol.9
, pp. 669-685
-
-
Kafitula, T.1
-
22
-
-
0001758791
-
Stability of weak shocks in γ-ω Systems
-
T. Kafitula, Stability of weak shocks in γ-ω systems, Indiana Univ. Math. J., 40 (1991), pp. 1193-1219.
-
(1991)
Indiana Univ. Math. J.
, vol.40
, pp. 1193-1219
-
-
Kafitula, T.1
-
23
-
-
0033628312
-
Existence and stability of standing hole solutions to complex ginzburg-landau equations
-
T. Kafitula and J. Rubin, Existence and stability of standing hole solutions to complex Ginzburg-Landau equations, Nonlinearity, 13 (2000), pp. 77-112.
-
(2000)
Nonlinearity
, vol.13
, pp. 77-112
-
-
Kafitula, T.1
Rubin, J.2
-
24
-
-
4243664710
-
Phase slippage, nonadiabatic effect, and dynamics of a source of traveling waves
-
E. Kaflan and V. Steinberg, Phase slippage, nonadiabatic effect, and dynamics of a source of traveling waves, Phys. Rev. Lett., 71 (1993), pp. 3291-3294.
-
(1993)
Phys. Rev. Lett.
, vol.71
, pp. 3291-3294
-
-
Kaflan, E.1
Steinberg, V.2
-
25
-
-
40749110185
-
Coherent structures generated by inhomogeneities in oscillatory media
-
R. Kollár and a. Scheel, Coherent structures generated by inhomogeneities in oscillatory media, SIAM J. Appl. Dyn. Syst., 6 (2007), pp. 236-262.
-
(2007)
SIAM J. Appl. Dyn. Syst.
, vol.6
, pp. 236-262
-
-
Kollár, R.1
Scheel, A.2
-
26
-
-
4243198145
-
Extended states of nonlinear traveling wave convection. II. Fronts and spatiotemporal defects
-
article 6452
-
P. Kolodner, Extended states of nonlinear traveling wave convection. II. Fronts and spatiotemporal defects, Phys. Rev. A, 46 (1992), article 6452.
-
(1992)
Phys. Rev. A
, vol.46
-
-
Kolodner, P.1
-
27
-
-
0000588222
-
Plane wave solutions to reaction-diffusion equations
-
N. Kofell and L. N. Howard, Plane wave solutions to reaction-diffusion equations, Stud. Appl. Math., 52 (1973), pp. 291-328.
-
(1973)
Stud. Appl. Math.
, vol.52
, pp. 291-328
-
-
Kofell, N.1
Howard, L.N.2
-
28
-
-
0345867158
-
Stationary modulated-amplitude waves in the 1d complex ginzburg-landau equation
-
Y. Lan, N. Garnier, and P. CvitanoviĆ, Stationary modulated-amplitude waves in the 1D complex Ginzburg-Landau equation, Phys. D, 188 (2004), pp. 193-212.
-
(2004)
Phys. D
, vol.188
, pp. 193-212
-
-
Lan, Y.1
Garnier, N.2
Cvitanović, P.3
-
29
-
-
0035873648
-
Traveling hole solutions of the complex ginzburg-landau equation: A review
-
J. Lega, Traveling hole solutions of the complex Ginzburg-Landau equation: A review, Phys. D, 152-153 (2001), pp. 269-287.
-
(2001)
Phys. D
, vol.152-153
, pp. 269-287
-
-
Lega, J.1
-
30
-
-
2542484613
-
-
Maplesoft, Waterloo, ON, see also
-
M. B. Monagan, K. O. Geddes, K. M. Heal, H. Labahn, S. M. Vorkoetter, J. McCarron, and p. DeMarco, Maple Introductory Programming Guide, Maplesoft, Waterloo, ON, 2007; see also http://www.maplesoft.com.
-
(2007)
Maple Introductory Programming Guide
-
-
Monagan, M.B.1
Geddes, K.O.2
Heal, K.M.3
Labahn, H.4
Vorkoetter, S.M.5
McCarron, J.6
Demarco, P.7
-
31
-
-
0034726488
-
Localized structures in coupled ginzburg-landau equations
-
R. Montagne and E. Hernández-García, Localized structures in coupled Ginzburg-Landau equations, Phys. Lett. A, 273 (2000), pp. 239-244.
-
(2000)
Phys. Lett. A
, vol.273
, pp. 239-244
-
-
Montagne, R.1
Hernández-García, E.2
-
32
-
-
0000873856
-
Envelope equations
-
A. C. Newell, ed., American Mathematical Society, Providence, RI
-
A. C. Newell, Envelope equations, in Nonlinear Wave Motion, Lectures in Appl. Math. 15, A. C. Newell, ed., American Mathematical Society, Providence, RI, 1974, pp. 157-163.
-
(1974)
Nonlinear Wave Motion Lectures in Appl. Math.
, vol.15
, pp. 157-163
-
-
Newell, A.C.1
-
33
-
-
0345848729
-
The accumulation of eigenvalues in a stability problem
-
S. NII, The accumulation of eigenvalues in a stability problem, Phys. D, 142 (2000), pp. 70-86.
-
(2000)
Phys. D
, vol.142
, pp. 70-86
-
-
Nii, S.1
-
34
-
-
0003001381
-
Formations of spatial patterns and holes in the generalized ginzburg-landauequation
-
K. Nozaki and N. Bekki, Formations of spatial patterns and holes in the generalized Ginzburg-Landauequation, Phys. Lett. A, 110 (1985), pp. 133-135.
-
(1985)
Phys. Lett. A
, vol.110
, pp. 133-135
-
-
Nozaki, K.1
Bekki, N.2
-
35
-
-
42749104027
-
Sources and holes in a one-dimensional traveling-wave convection experiment
-
L. Pastur, M. T. Westra, D. Snouck, W. van de Water, M. van Hecke, C. Storm, and W. van Saarloos, Sources and holes in a one-dimensional traveling-wave convection experiment, Phys. Rev. E, 67 (2003), article 036305.
-
(2003)
Phys. Rev. E
, vol.67
, pp. 036305
-
-
Pastur, L.1
Westra, M.T.2
Snouck, D.3
Van De Water, W.4
Van Hecke, M.5
Storm, C.6
Van Saarloos, W.7
-
36
-
-
0037212389
-
Sources and sinks in 1d traveling waves
-
L. Pastur, M. T. Westra, and W. van de Water, Sources and sinks in 1D traveling waves, Phys. D, 174 (2003), pp. 71-83.
-
(2003)
Phys. D
, vol.174
, pp. 71-83
-
-
Pastur, L.1
Westra, M.T.2
Van De Water, W.3
-
37
-
-
0000030308
-
One-dimensional spirals-novel asynchronous chemical wave sources
-
J. J. Perraud, a. Dewit, E. Dulos, P. DeKeffer, G. Dewel, and P. Borckmans, One-dimensional spirals-Novel asynchronous chemical wave sources, Phys. Rev. Lett., 71 (1993), pp. 1272-1275.
-
(1993)
Phys. Rev. Lett.
, vol.71
, pp. 1272-1275
-
-
Perraud, J.J.1
Dewit, A.2
Dulos, E.3
Dekeffer, P.4
Dewel, G.5
Borckmans, P.6
-
38
-
-
0000536084
-
Automatic selection of methods for solving stiff and nonstiff systems of ordinary differential equations
-
L. Petzold, Automatic selection of methods for solving stiff and nonstiff systems of ordinary differential equations, SIAM J. Sci. Stat. Comput., 4 (1983), pp. 136-148.
-
(1983)
SIAM J. Sci. Stat. Comput.
, vol.4
, pp. 136-148
-
-
Petzold, L.1
-
39
-
-
27144450944
-
Asymmetric target patterns in one-dimensional oscillatory media with genuine nonlocal coupling
-
article 198301
-
F. Plenge, H. Varela, and K. Krischer, Asymmetric target patterns in one-dimensional oscillatory media with genuine nonlocal coupling, Phys. Rev. Lett., 94 (2005), article 198301.
-
(2005)
Phys. Rev. Lett.
, vol.94
-
-
Plenge, F.1
Varela, H.2
Krischer, K.3
-
40
-
-
58149209842
-
Hole solutions in the 1d complex ginzburg-landauequation
-
S. POPP, O. Stiller, I. Aranson, and L. Kramer, Hole solutions in the 1D complex Ginzburg-Landauequation, Phys. D, 84 (1995), pp. 398-423.
-
(1995)
Phys. D
, vol.84
, pp. 398-423
-
-
Popp, S.1
Stiller, O.2
Aranson, I.3
Kramer, L.4
-
41
-
-
0000884205
-
Localized hole solutions and spa- tiotemporal chaos in the 1 d complex ginzburg-landau equation
-
S. POPP, O. Stiller, I. Aranson, A. Weber, and L. Kramer, Localized hole solutions and spa- tiotemporal chaos in the 1 D complex Ginzburg-Landau equation, Phys. Rev. Lett., 70 (1993), pp. 3880-3883.
-
(1993)
Phys. Rev. Lett.
, vol.70
, pp. 3880-3883
-
-
Popp, S.1
Stiller, O.2
Aranson, I.3
Weber, A.4
Kramer, L.5
-
42
-
-
4243467708
-
Stability of neuronal pulses composed of concatenated unstable kinks
-
Article 011904
-
M. M. ROMEO and C. K. R. T. Jgnes, Stability of neuronal pulses composed of concatenated unstable kinks, Phys. Rev. E, 63 (2001), article 011904.
-
(2001)
Phys. Rev. E
, vol.63
-
-
Romeo, M.M.1
Jgnes, C.K.R.T.2
-
43
-
-
0001558997
-
Instability of the hole solution in the complex ginzburg-landau equation
-
H. SAKAGUCHI, Instability of the hole solution in the complex Ginzburg-Landau equation, Progr. Theoret. Phys., 85 (1991), pp. 417-421.
-
(1991)
Progr. Theoret. Phys.
, vol.85
, pp. 417-421
-
-
Sakaguchi, H.1
-
44
-
-
21944451412
-
Stability of multiple-pulse solutions
-
B. Sandstede, Stability of multiple-pulse solutions, Trans. Amer. Math. Soc., 350 (1998), pp. 429-472.
-
(1998)
Trans. Amer. Math. Soc.
, vol.350
, pp. 429-472
-
-
Sandstede, B.1
-
45
-
-
11844279687
-
Absolute stability of standing pulses
-
B. Sandstede and A. SCHEEL, Absolute stability of standing pulses, Nonlinearity, 18 (2005), pp. 331-378.
-
(2005)
Nonlinearity
, vol.18
, pp. 331-378
-
-
Sandstede, B.1
Scheel, A.2
-
46
-
-
2942682726
-
Defects in oscillatory media: Toward a classification
-
B. Sandstede and A. SCHEEL, Defects in oscillatory media: Toward a classification, SIAM J. Appl. Dyn. Syst., 3 (2004), pp. 1-68.
-
(2004)
SIAM J. Appl. Dyn. Syst.
, vol.3
, pp. 1-68
-
-
Sandstede, B.1
Scheel, A.2
-
47
-
-
0035343506
-
On the stability of periodic travelling waves with large spatial period
-
B. Sandstede and A. SCHEEL, On the stability of periodic travelling waves with large spatial period, J. Differential Equations, 172 (2001), pp. 134-188.
-
(2001)
J. Differential Equations
, vol.172
, pp. 134-188
-
-
Sandstede, B.1
Scheel, A.2
-
48
-
-
0034258264
-
Gluing unstable fronts and backs together can produce stable pulses
-
B. Sandstede and A. SCHEEL, Gluing unstable fronts and backs together can produce stable pulses, Nonlinearity, 13 (2000), pp. 1465-1482.
-
(2000)
Nonlinearity
, vol.13
, pp. 1465-1482
-
-
Sandstede, B.1
Scheel, A.2
-
49
-
-
0009905308
-
Stability of phase-singular solutions to the one-dimensional complex ginzburglandau equation
-
S. Sasa and T. IWAMOTO, Stability of phase-singular solutions to the one-dimensional complex GinzburgLandau equation, Phys. Lett. A, 175 (1993), pp. 289-294.
-
(1993)
Phys. Lett. A
, vol.175
, pp. 289-294
-
-
Sasa, S.1
Iwamoto, T.2
-
50
-
-
54049146771
-
A comparison of periodic travelling wave generation by robin and dirichlet boundary conditions in oscillatory reaction-diffusion equations
-
J. a. Sherratt, a comparison of periodic travelling wave generation by Robin and Dirichlet boundary conditions in oscillatory reaction-diffusion equations, MA J. Appl. Math., 73 (2008), pp. 759-781.
-
(2008)
MA J. Appl. Math.
, vol.73
, pp. 759-781
-
-
Sherratt, J.A.1
-
51
-
-
0242404009
-
Periodic travelling wave selection by dirichlet boundary conditions in oscillatory reaction-diffusion systems
-
J. a. Sherratt, Periodic travelling wave selection by Dirichlet boundary conditions in oscillatory reaction-diffusion systems, SIAM J. Appl. Math., 63 (2003), pp. 1520-1538.
-
(2003)
SIAM J. Appl. Math.
, vol.63
, pp. 1520-1538
-
-
Sherratt, J.A.1
-
52
-
-
0028518381
-
On the evolution of periodic plane waves in reaction-diffusion equations of γ-ω Type
-
J. a. Sherratt, On the evolution of periodic plane waves in reaction-diffusion equations of γ-ω type, SIAM J. Appl. Math., 54 (1994), pp. 1374-1385.
-
(1994)
SIAM J. Appl. Math.
, vol.54
, pp. 1374-1385
-
-
Sherratt, J.A.1
-
53
-
-
70449104849
-
Absolute stability of wavetrains can explain spatiotemporal dynamics in reaction-diffusion systems of lambda-omega type
-
M. J. Smith, J. D. M. RADEMACHER, and J. A. Sherratt, Absolute stability of wavetrains can explain spatiotemporal dynamics in reaction-diffusion systems of lambda-omega type, SIAM J. Appl. Dyn. Syst., 8 (2009), pp. 1136-1159.
-
(2009)
SIAM J. Appl. Dyn. Syst.
, vol.8
, pp. 1136-1159
-
-
Smith, M.J.1
Rademacher, J.D.M.2
Sherratt, J.A.3
-
54
-
-
42249086959
-
The effects of obstacle size on periodic travelling waves in oscillatory reaction-diffusion equations
-
M. J. Smith, J. A. Sherratt, and N. J. Armstrong, The effects of obstacle size on periodic travelling waves in oscillatory reaction-diffusion equations, Proc. R. Soc. Lond. A, 464 (2008), pp. 365-390.
-
(2008)
Proc. R. Soc. Lond. A
, vol.464
, pp. 365-390
-
-
Smith, M.J.1
Sherratt, J.A.2
Armstrong, N.J.3
-
55
-
-
0000440239
-
All we know about hole solutions in the cgle
-
O. Stiller, S. Pgpp, I. ARANSON, and L. Kramer, All we know about hole solutions in the CGLE, Phys. D, 87 (1995), pp. 361-370.
-
(1995)
Phys. D
, vol.87
, pp. 361-370
-
-
Stiller, O.1
Pgpp, S.2
Aranson, I.3
Kramer, L.4
-
56
-
-
0037212173
-
Coherent and incoherent structures in systems described by the 1d cgle: Experiments and identification
-
M. van HECKE, Coherent and incoherent structures in systems described by the 1D CGLE: Experiments and identification, Phys. D, 174 (2003), pp. 134-151.
-
(2003)
Phys. D
, vol.174
, pp. 134-151
-
-
Van Hecke, M.1
-
57
-
-
0000558599
-
Building blocks of spatiotemporal intermittency
-
M. van HECKE, Building blocks of spatiotemporal intermittency, Phys. Rev. Lett., 80 (1998), pp. 1896-1899.
-
(1998)
Phys. Rev. Lett.
, vol.80
, pp. 1896-1899
-
-
Van Hecke, M.1
-
58
-
-
6644226849
-
Ordered and self-disordered dynamics of holes and defects in the one-dimensional complex ginzburg-landau equation
-
M. van HECKE and M. Howard, Ordered and self-disordered dynamics of holes and defects in the one-dimensional complex Ginzburg-Landau equation, Phys. Rev. Lett., 86 (2001), pp. 2018-2021.
-
(2001)
Phys. Rev. Lett.
, vol.86
, pp. 2018-2021
-
-
Van Hecke, M.1
Howard, M.2
-
59
-
-
0039842455
-
Sources, sinks and wavenumber selection in coupled cgl equations and experimental implications for counter-propagating wave systems
-
M. van HECKE, C. Stgrm, and W. van SAARLOOS, Sources, sinks and wavenumber selection in coupled CGL equations and experimental implications for counter-propagating wave systems, Phys. D, 134 (1999), pp. 1-47.
-
(1999)
Phys. D
, vol.134
, pp. 1-47
-
-
Van Hecke, M.1
Stgrm, C.2
Van Saarloos, W.3
-
60
-
-
44049115047
-
Fronts, pulses, sources and sinks in generalized complex ginzburg-landau equations
-
W. van SAARLOOS and P. C. HOHENBERG, Fronts, pulses, sources and sinks in generalized complex Ginzburg-Landau equations, Phys. D, 56 (1992), pp. 303-367.
-
(1992)
Phys. D
, vol.56
, pp. 303-367
-
-
Van Saarloos, W.1
Hohenberg, P.C.2
|