메뉴 건너뛰기




Volumn 9, Issue 3, 2010, Pages 883-918

Patterns of sources and sinks in the complex Ginzburg-Landau equation with zero linear dispersion

Author keywords

system; Absolute stability; Coherent structure; Convec tive stability; Defect; Hole; Nozaki Bekki hole; Partial differential equations; Pattern formation; Reaction diffusion; Shock; Sink; Source

Indexed keywords

ABSOLUTE STABILITY; COHERENT STRUCTURE; CONVEC- TIVE STABILITY; HOLE; NOZAKI-BEKKI HOLE; PARTIAL DIFFERENTIAL; PATTERN FORMATION; REACTION DIFFUSION; SHOCK; SINK; SOURCE;

EID: 77958049692     PISSN: None     EISSN: 15360040     Source Type: Journal    
DOI: 10.1137/090780961     Document Type: Article
Times cited : (11)

References (60)
  • 1
    • 0000636128 scopus 로고    scopus 로고
    • Sources and sinks separating domains of left-and right-traveling waves: Experiment versus amplitude equations
    • R. Alvarez, M. van Heoke, and W. van SAARLOOS, Sources and sinks separating domains of left-and right-traveling waves: Experiment versus amplitude equations, Phys. Rev. E, 56 (1997), pp. R1306- R1309.
    • (1997) Phys. Rev. E , vol.56
    • Alvarez, R.1    Van Heoke, M.2    Van Saarloos, W.3
  • 2
    • 0036013603 scopus 로고    scopus 로고
    • The world of the complex ginzburg-landau equation
    • I. S. ARANSON and L. Kramer, The world of the complex Ginzburg-Landau equation, Rev. Modern Phys., 74 (2002), pp. 99-143.
    • (2002) Rev. Modern Phys. , vol.74 , pp. 99-143
    • Aranson, I.S.1    Kramer, L.2
  • 3
    • 0031190503 scopus 로고    scopus 로고
    • The structure of spiral-domain patterns and shocks in the 2d complex ginzburg-landau equation
    • T. Bghr, G. Huber, and E. Ott, The structure of spiral-domain patterns and shocks in the 2D complex Ginzburg-Landau equation, Phys. D, 106 (1997), pp. 95-112.
    • (1997) Phys. D , vol.106 , pp. 95-112
    • Bghr, T.1    Huber, G.2    Ott, E.3
  • 4
    • 0037212936 scopus 로고    scopus 로고
    • Nonlinear analysis of the eckhaus instability: Modulated amplitude waves and phase chaos with nonzero average phase gradient
    • L. Brusgh, a. TORCINI, and M. Bär, Nonlinear analysis of the Eckhaus instability: Modulated amplitude waves and phase chaos with nonzero average phase gradient, Phys. D, 174 (2003), pp. 152-167.
    • (2003) Phys. D , vol.174 , pp. 152-167
    • Brusgh, L.1    Torcini, A.2    Bär, M.3
  • 5
    • 0035892848 scopus 로고    scopus 로고
    • Modulated amplitude waves and defect formation in the one-dimensional complex ginzburg-landau equation
    • L. Brusgh, A. TORCINI, M. van HECKE, M. G. Zimmermann, and M. Bär, Modulated amplitude waves and defect formation in the one-dimensional complex Ginzburg-Landau equation, Phys. D, 160 (2001), pp. 127-148.
    • (2001) Phys. D , vol.160 , pp. 127-148
    • Brusgh, L.1    Torcini, A.2    Van Hecke, M.3    Zimmermann, M.G.4    Bär, M.5
  • 7
    • 0032614102 scopus 로고    scopus 로고
    • Bekki-nozaki amplitude holes in hydro- thermal nonlinear waves
    • J. Burguete, H.Chaté, F. Daviaud, and N. MUKOLOBWIEZ, Bekki-Nozaki amplitude holes in hydro- thermal nonlinear waves, Phys. Rev. Lett., 82 (1999), article 3252.
    • (1999) Phys. Rev. Lett. , vol.82 , pp. 3252
    • Burguete, J.1    Chaté, H.2    Daviaud, F.3    Mukolobwiez, N.4
  • 8
    • 33748335189 scopus 로고
    • Spatiotemporal intermittency regimes of the one-dimensional complex ginzburg-landau equation
    • H. Chaté, Spatiotemporal intermittency regimes of the one-dimensional complex Ginzburg-Landau equation, Nonlinearity, 7 (1994), pp. 185-204.
    • (1994) Nonlinearity , vol.7 , pp. 185-204
    • Chaté, H.1
  • 9
    • 0000503173 scopus 로고
    • Stability of the bekki-nozaki hole solutions to the one-dimensional complex ginzburg-landau equation
    • H. Chaté and P. Manneville, Stability of the Bekki-Nozaki hole solutions to the one-dimensional complex Ginzburg-Landau equation, Phys. Lett. A, 171 (1992), pp. 183-188.
    • (1992) Phys. Lett. A , vol.171 , pp. 183-188
    • Chaté, H.1    Manneville, P.2
  • 10
    • 34748918858 scopus 로고    scopus 로고
    • Sources and sinks in the vicinity of a weakly inverted instability
    • J. Cisternas and O. DESCALZI, Sources and sinks in the vicinity of a weakly inverted instability, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 17 (2007), pp. 2821-2826.
    • (2007) Lnternat. J. Bifur. Chaos Appl. Sci. Engrg. , vol.17 , pp. 2821-2826
    • Cisternas, J.1    Descalzi, O.2
  • 11
    • 0031223379 scopus 로고    scopus 로고
    • Nonlinear numerics
    • E. J. DOEDEL, Nonlinear numerics, J. Franklin Inst., 334 (1997), pp. 1049-1073.
    • (1997) J. Franklin Inst. , vol.334 , pp. 1049-1073
    • Doedel, E.J.1
  • 12
    • 0001755071 scopus 로고
    • Auto, a program for the automatic bifurcation analysis of autonomous systems
    • E. J. DOEDEL, AUTO, A program for the automatic bifurcation analysis of autonomous systems, Congr. Numer., 30 (1981), pp. 265-384.
    • (1981) Congr. Numer. , vol.30 , pp. 265-384
    • Doedel, E.J.1
  • 13
    • 77958055560 scopus 로고    scopus 로고
    • Numerical continuation of branch points of equilibria and periodic orbits
    • E. J. Doedel, G. Domokos, and I. G. Kevrekidis, eds., World Scientific, River Edge, NJ
    • E. J. DOEDEL, W. Ggvaerts, Y. A. Kuznetsgv, and A. Dhggge, Numerical continuation of branch points of equilibria and periodic orbits, in Modelling and Computation in Dynamical Systems, E. J. Doedel, G. Domokos, and 1. G. Kevrekidis, eds., World Scientific, River Edge, NJ, 2006, pp. 145-164.
    • Modelling and Computation in Dynamical Systems , pp. 145-164
    • Doedel, E.J.1    Ggvaerts, W.2    Kuznetsgv, Y.A.3    Dhggge, A.4
  • 14
    • 22244440233 scopus 로고    scopus 로고
    • Breaking the hidden symmetry in the ginzburg-landau equation
    • a. DOELMAN, Breaking the hidden symmetry in the Ginzburg-Landau equation, Phys. D, 97 (1996), pp. 398-428.
    • (1996) Phys. D , vol.97 , pp. 398-428
    • Doelman, A.1
  • 15
    • 0001505194 scopus 로고    scopus 로고
    • Transition fronts and localized structures in bistable reaction-diffusion equations
    • G. B. ERMENTROUT, X. Chen, and Z. Chen, Transition fronts and localized structures in bistable reaction-diffusion equations, Phys. D, 108 (1997), pp. 147-167.
    • (1997) Phys. D , vol.108 , pp. 147-167
    • Ermentrout, G.B.1    Chen, X.2    Chen, Z.3
  • 16
    • 12244269740 scopus 로고    scopus 로고
    • Dynamics of defects and travelling waves in an interfacial finger pattern
    • P. Habdas and J. R. DE Bruyn, Dynamics of defects and travelling waves in an interfacial finger pattern, Phys. D, 200 (2005), pp. 273-286.
    • (2005) Phys. D , vol.200 , pp. 273-286
    • Habdas, P.1    De Bruyn, J.R.2
  • 17
    • 0035364755 scopus 로고    scopus 로고
    • Behavior of sink and source defects in a one-dimensional traveling finger pattern
    • P. Habdas, M. J. Case, and J. R. de Bruyn, Behavior of sink and source defects in a one-dimensional traveling finger pattern, Phys. Rev. E, 63 (2001), article 066305.
    • (2001) Phys. Rev. E , vol.63 , pp. 066305
    • Habdas, P.1    Case, M.J.2    De Bruyn, J.R.3
  • 18
    • 0001811061 scopus 로고
    • Odepack: A systematized collection of ode solvers
    • R. S. Stepleman, M. Carver, R. Peskin, W. F. Ames, and R. Vichnevetsky, eds., North-Holland, Amsterdam
    • A. C. Hindmarsh, ODEPACK: A systematized collection of ODE solvers, in Scientific Computing, R. S. Stepleman, M. Carver, R. Peskin, W. F. Ames, and R. Vichnevetsky, eds., North-Holland, Amsterdam, 1983, pp. 55-64.
    • (1983) Scientific Computing , pp. 55-64
    • Hindmarsh, A.C.1
  • 19
    • 42749102882 scopus 로고    scopus 로고
    • Hole-defect chaos in the one-dimensional complex ginzburg-landau equation
    • article 026213
    • M. Howard and M. van Heoke, Hole-defect chaos in the one-dimensional complex Ginzburg-Landau equation, Phys. Rev. E, 68 (2003), article 026213.
    • (2003) Phys. Rev. E , vol.68
    • Howard, M.1    Van Heoke, M.2
  • 21
    • 0001969945 scopus 로고    scopus 로고
    • Existence and stability of singular heteroclinic orbits for the ginzburg-landau equation
    • T. Kafitula, Existence and stability of singular heteroclinic orbits for the Ginzburg-Landau equation, Nonlinearity, 9 (1996), pp. 669-685.
    • (1996) Nonlinearity , vol.9 , pp. 669-685
    • Kafitula, T.1
  • 22
    • 0001758791 scopus 로고
    • Stability of weak shocks in γ-ω Systems
    • T. Kafitula, Stability of weak shocks in γ-ω systems, Indiana Univ. Math. J., 40 (1991), pp. 1193-1219.
    • (1991) Indiana Univ. Math. J. , vol.40 , pp. 1193-1219
    • Kafitula, T.1
  • 23
    • 0033628312 scopus 로고    scopus 로고
    • Existence and stability of standing hole solutions to complex ginzburg-landau equations
    • T. Kafitula and J. Rubin, Existence and stability of standing hole solutions to complex Ginzburg-Landau equations, Nonlinearity, 13 (2000), pp. 77-112.
    • (2000) Nonlinearity , vol.13 , pp. 77-112
    • Kafitula, T.1    Rubin, J.2
  • 24
    • 4243664710 scopus 로고
    • Phase slippage, nonadiabatic effect, and dynamics of a source of traveling waves
    • E. Kaflan and V. Steinberg, Phase slippage, nonadiabatic effect, and dynamics of a source of traveling waves, Phys. Rev. Lett., 71 (1993), pp. 3291-3294.
    • (1993) Phys. Rev. Lett. , vol.71 , pp. 3291-3294
    • Kaflan, E.1    Steinberg, V.2
  • 25
    • 40749110185 scopus 로고    scopus 로고
    • Coherent structures generated by inhomogeneities in oscillatory media
    • R. Kollár and a. Scheel, Coherent structures generated by inhomogeneities in oscillatory media, SIAM J. Appl. Dyn. Syst., 6 (2007), pp. 236-262.
    • (2007) SIAM J. Appl. Dyn. Syst. , vol.6 , pp. 236-262
    • Kollár, R.1    Scheel, A.2
  • 26
    • 4243198145 scopus 로고
    • Extended states of nonlinear traveling wave convection. II. Fronts and spatiotemporal defects
    • article 6452
    • P. Kolodner, Extended states of nonlinear traveling wave convection. II. Fronts and spatiotemporal defects, Phys. Rev. A, 46 (1992), article 6452.
    • (1992) Phys. Rev. A , vol.46
    • Kolodner, P.1
  • 27
    • 0000588222 scopus 로고
    • Plane wave solutions to reaction-diffusion equations
    • N. Kofell and L. N. Howard, Plane wave solutions to reaction-diffusion equations, Stud. Appl. Math., 52 (1973), pp. 291-328.
    • (1973) Stud. Appl. Math. , vol.52 , pp. 291-328
    • Kofell, N.1    Howard, L.N.2
  • 28
    • 0345867158 scopus 로고    scopus 로고
    • Stationary modulated-amplitude waves in the 1d complex ginzburg-landau equation
    • Y. Lan, N. Garnier, and P. CvitanoviĆ, Stationary modulated-amplitude waves in the 1D complex Ginzburg-Landau equation, Phys. D, 188 (2004), pp. 193-212.
    • (2004) Phys. D , vol.188 , pp. 193-212
    • Lan, Y.1    Garnier, N.2    Cvitanović, P.3
  • 29
    • 0035873648 scopus 로고    scopus 로고
    • Traveling hole solutions of the complex ginzburg-landau equation: A review
    • J. Lega, Traveling hole solutions of the complex Ginzburg-Landau equation: A review, Phys. D, 152-153 (2001), pp. 269-287.
    • (2001) Phys. D , vol.152-153 , pp. 269-287
    • Lega, J.1
  • 31
    • 0034726488 scopus 로고    scopus 로고
    • Localized structures in coupled ginzburg-landau equations
    • R. Montagne and E. Hernández-García, Localized structures in coupled Ginzburg-Landau equations, Phys. Lett. A, 273 (2000), pp. 239-244.
    • (2000) Phys. Lett. A , vol.273 , pp. 239-244
    • Montagne, R.1    Hernández-García, E.2
  • 32
    • 0000873856 scopus 로고
    • Envelope equations
    • A. C. Newell, ed., American Mathematical Society, Providence, RI
    • A. C. Newell, Envelope equations, in Nonlinear Wave Motion, Lectures in Appl. Math. 15, A. C. Newell, ed., American Mathematical Society, Providence, RI, 1974, pp. 157-163.
    • (1974) Nonlinear Wave Motion Lectures in Appl. Math. , vol.15 , pp. 157-163
    • Newell, A.C.1
  • 33
    • 0345848729 scopus 로고    scopus 로고
    • The accumulation of eigenvalues in a stability problem
    • S. NII, The accumulation of eigenvalues in a stability problem, Phys. D, 142 (2000), pp. 70-86.
    • (2000) Phys. D , vol.142 , pp. 70-86
    • Nii, S.1
  • 34
    • 0003001381 scopus 로고
    • Formations of spatial patterns and holes in the generalized ginzburg-landauequation
    • K. Nozaki and N. Bekki, Formations of spatial patterns and holes in the generalized Ginzburg-Landauequation, Phys. Lett. A, 110 (1985), pp. 133-135.
    • (1985) Phys. Lett. A , vol.110 , pp. 133-135
    • Nozaki, K.1    Bekki, N.2
  • 36
    • 0037212389 scopus 로고    scopus 로고
    • Sources and sinks in 1d traveling waves
    • L. Pastur, M. T. Westra, and W. van de Water, Sources and sinks in 1D traveling waves, Phys. D, 174 (2003), pp. 71-83.
    • (2003) Phys. D , vol.174 , pp. 71-83
    • Pastur, L.1    Westra, M.T.2    Van De Water, W.3
  • 38
    • 0000536084 scopus 로고
    • Automatic selection of methods for solving stiff and nonstiff systems of ordinary differential equations
    • L. Petzold, Automatic selection of methods for solving stiff and nonstiff systems of ordinary differential equations, SIAM J. Sci. Stat. Comput., 4 (1983), pp. 136-148.
    • (1983) SIAM J. Sci. Stat. Comput. , vol.4 , pp. 136-148
    • Petzold, L.1
  • 39
    • 27144450944 scopus 로고    scopus 로고
    • Asymmetric target patterns in one-dimensional oscillatory media with genuine nonlocal coupling
    • article 198301
    • F. Plenge, H. Varela, and K. Krischer, Asymmetric target patterns in one-dimensional oscillatory media with genuine nonlocal coupling, Phys. Rev. Lett., 94 (2005), article 198301.
    • (2005) Phys. Rev. Lett. , vol.94
    • Plenge, F.1    Varela, H.2    Krischer, K.3
  • 40
    • 58149209842 scopus 로고
    • Hole solutions in the 1d complex ginzburg-landauequation
    • S. POPP, O. Stiller, I. Aranson, and L. Kramer, Hole solutions in the 1D complex Ginzburg-Landauequation, Phys. D, 84 (1995), pp. 398-423.
    • (1995) Phys. D , vol.84 , pp. 398-423
    • Popp, S.1    Stiller, O.2    Aranson, I.3    Kramer, L.4
  • 41
    • 0000884205 scopus 로고
    • Localized hole solutions and spa- tiotemporal chaos in the 1 d complex ginzburg-landau equation
    • S. POPP, O. Stiller, I. Aranson, A. Weber, and L. Kramer, Localized hole solutions and spa- tiotemporal chaos in the 1 D complex Ginzburg-Landau equation, Phys. Rev. Lett., 70 (1993), pp. 3880-3883.
    • (1993) Phys. Rev. Lett. , vol.70 , pp. 3880-3883
    • Popp, S.1    Stiller, O.2    Aranson, I.3    Weber, A.4    Kramer, L.5
  • 42
    • 4243467708 scopus 로고    scopus 로고
    • Stability of neuronal pulses composed of concatenated unstable kinks
    • Article 011904
    • M. M. ROMEO and C. K. R. T. Jgnes, Stability of neuronal pulses composed of concatenated unstable kinks, Phys. Rev. E, 63 (2001), article 011904.
    • (2001) Phys. Rev. E , vol.63
    • Romeo, M.M.1    Jgnes, C.K.R.T.2
  • 43
    • 0001558997 scopus 로고
    • Instability of the hole solution in the complex ginzburg-landau equation
    • H. SAKAGUCHI, Instability of the hole solution in the complex Ginzburg-Landau equation, Progr. Theoret. Phys., 85 (1991), pp. 417-421.
    • (1991) Progr. Theoret. Phys. , vol.85 , pp. 417-421
    • Sakaguchi, H.1
  • 44
    • 21944451412 scopus 로고    scopus 로고
    • Stability of multiple-pulse solutions
    • B. Sandstede, Stability of multiple-pulse solutions, Trans. Amer. Math. Soc., 350 (1998), pp. 429-472.
    • (1998) Trans. Amer. Math. Soc. , vol.350 , pp. 429-472
    • Sandstede, B.1
  • 45
    • 11844279687 scopus 로고    scopus 로고
    • Absolute stability of standing pulses
    • B. Sandstede and A. SCHEEL, Absolute stability of standing pulses, Nonlinearity, 18 (2005), pp. 331-378.
    • (2005) Nonlinearity , vol.18 , pp. 331-378
    • Sandstede, B.1    Scheel, A.2
  • 46
    • 2942682726 scopus 로고    scopus 로고
    • Defects in oscillatory media: Toward a classification
    • B. Sandstede and A. SCHEEL, Defects in oscillatory media: Toward a classification, SIAM J. Appl. Dyn. Syst., 3 (2004), pp. 1-68.
    • (2004) SIAM J. Appl. Dyn. Syst. , vol.3 , pp. 1-68
    • Sandstede, B.1    Scheel, A.2
  • 47
    • 0035343506 scopus 로고    scopus 로고
    • On the stability of periodic travelling waves with large spatial period
    • B. Sandstede and A. SCHEEL, On the stability of periodic travelling waves with large spatial period, J. Differential Equations, 172 (2001), pp. 134-188.
    • (2001) J. Differential Equations , vol.172 , pp. 134-188
    • Sandstede, B.1    Scheel, A.2
  • 48
    • 0034258264 scopus 로고    scopus 로고
    • Gluing unstable fronts and backs together can produce stable pulses
    • B. Sandstede and A. SCHEEL, Gluing unstable fronts and backs together can produce stable pulses, Nonlinearity, 13 (2000), pp. 1465-1482.
    • (2000) Nonlinearity , vol.13 , pp. 1465-1482
    • Sandstede, B.1    Scheel, A.2
  • 49
    • 0009905308 scopus 로고
    • Stability of phase-singular solutions to the one-dimensional complex ginzburglandau equation
    • S. Sasa and T. IWAMOTO, Stability of phase-singular solutions to the one-dimensional complex GinzburgLandau equation, Phys. Lett. A, 175 (1993), pp. 289-294.
    • (1993) Phys. Lett. A , vol.175 , pp. 289-294
    • Sasa, S.1    Iwamoto, T.2
  • 50
    • 54049146771 scopus 로고    scopus 로고
    • A comparison of periodic travelling wave generation by robin and dirichlet boundary conditions in oscillatory reaction-diffusion equations
    • J. a. Sherratt, a comparison of periodic travelling wave generation by Robin and Dirichlet boundary conditions in oscillatory reaction-diffusion equations, MA J. Appl. Math., 73 (2008), pp. 759-781.
    • (2008) MA J. Appl. Math. , vol.73 , pp. 759-781
    • Sherratt, J.A.1
  • 51
    • 0242404009 scopus 로고    scopus 로고
    • Periodic travelling wave selection by dirichlet boundary conditions in oscillatory reaction-diffusion systems
    • J. a. Sherratt, Periodic travelling wave selection by Dirichlet boundary conditions in oscillatory reaction-diffusion systems, SIAM J. Appl. Math., 63 (2003), pp. 1520-1538.
    • (2003) SIAM J. Appl. Math. , vol.63 , pp. 1520-1538
    • Sherratt, J.A.1
  • 52
    • 0028518381 scopus 로고
    • On the evolution of periodic plane waves in reaction-diffusion equations of γ-ω Type
    • J. a. Sherratt, On the evolution of periodic plane waves in reaction-diffusion equations of γ-ω type, SIAM J. Appl. Math., 54 (1994), pp. 1374-1385.
    • (1994) SIAM J. Appl. Math. , vol.54 , pp. 1374-1385
    • Sherratt, J.A.1
  • 53
    • 70449104849 scopus 로고    scopus 로고
    • Absolute stability of wavetrains can explain spatiotemporal dynamics in reaction-diffusion systems of lambda-omega type
    • M. J. Smith, J. D. M. RADEMACHER, and J. A. Sherratt, Absolute stability of wavetrains can explain spatiotemporal dynamics in reaction-diffusion systems of lambda-omega type, SIAM J. Appl. Dyn. Syst., 8 (2009), pp. 1136-1159.
    • (2009) SIAM J. Appl. Dyn. Syst. , vol.8 , pp. 1136-1159
    • Smith, M.J.1    Rademacher, J.D.M.2    Sherratt, J.A.3
  • 54
    • 42249086959 scopus 로고    scopus 로고
    • The effects of obstacle size on periodic travelling waves in oscillatory reaction-diffusion equations
    • M. J. Smith, J. A. Sherratt, and N. J. Armstrong, The effects of obstacle size on periodic travelling waves in oscillatory reaction-diffusion equations, Proc. R. Soc. Lond. A, 464 (2008), pp. 365-390.
    • (2008) Proc. R. Soc. Lond. A , vol.464 , pp. 365-390
    • Smith, M.J.1    Sherratt, J.A.2    Armstrong, N.J.3
  • 55
    • 0000440239 scopus 로고
    • All we know about hole solutions in the cgle
    • O. Stiller, S. Pgpp, I. ARANSON, and L. Kramer, All we know about hole solutions in the CGLE, Phys. D, 87 (1995), pp. 361-370.
    • (1995) Phys. D , vol.87 , pp. 361-370
    • Stiller, O.1    Pgpp, S.2    Aranson, I.3    Kramer, L.4
  • 56
    • 0037212173 scopus 로고    scopus 로고
    • Coherent and incoherent structures in systems described by the 1d cgle: Experiments and identification
    • M. van HECKE, Coherent and incoherent structures in systems described by the 1D CGLE: Experiments and identification, Phys. D, 174 (2003), pp. 134-151.
    • (2003) Phys. D , vol.174 , pp. 134-151
    • Van Hecke, M.1
  • 57
    • 0000558599 scopus 로고    scopus 로고
    • Building blocks of spatiotemporal intermittency
    • M. van HECKE, Building blocks of spatiotemporal intermittency, Phys. Rev. Lett., 80 (1998), pp. 1896-1899.
    • (1998) Phys. Rev. Lett. , vol.80 , pp. 1896-1899
    • Van Hecke, M.1
  • 58
    • 6644226849 scopus 로고    scopus 로고
    • Ordered and self-disordered dynamics of holes and defects in the one-dimensional complex ginzburg-landau equation
    • M. van HECKE and M. Howard, Ordered and self-disordered dynamics of holes and defects in the one-dimensional complex Ginzburg-Landau equation, Phys. Rev. Lett., 86 (2001), pp. 2018-2021.
    • (2001) Phys. Rev. Lett. , vol.86 , pp. 2018-2021
    • Van Hecke, M.1    Howard, M.2
  • 59
    • 0039842455 scopus 로고    scopus 로고
    • Sources, sinks and wavenumber selection in coupled cgl equations and experimental implications for counter-propagating wave systems
    • M. van HECKE, C. Stgrm, and W. van SAARLOOS, Sources, sinks and wavenumber selection in coupled CGL equations and experimental implications for counter-propagating wave systems, Phys. D, 134 (1999), pp. 1-47.
    • (1999) Phys. D , vol.134 , pp. 1-47
    • Van Hecke, M.1    Stgrm, C.2    Van Saarloos, W.3
  • 60
    • 44049115047 scopus 로고
    • Fronts, pulses, sources and sinks in generalized complex ginzburg-landau equations
    • W. van SAARLOOS and P. C. HOHENBERG, Fronts, pulses, sources and sinks in generalized complex Ginzburg-Landau equations, Phys. D, 56 (1992), pp. 303-367.
    • (1992) Phys. D , vol.56 , pp. 303-367
    • Van Saarloos, W.1    Hohenberg, P.C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.