메뉴 건너뛰기




Volumn 21, Issue 2, 2010, Pages 310-326

Mining top-K frequent itemsets through progressive sampling

Author keywords

Bloom filters; Frequent itemsets mining; Progressive sampling; Sampling; Top K frequent itemsets

Indexed keywords

BLOOMS (METAL); DATA STRUCTURES; SAMPLING;

EID: 77958033888     PISSN: 13845810     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10618-010-0185-7     Document Type: Article
Times cited : (36)

References (17)
  • 3
    • 0242625264 scopus 로고    scopus 로고
    • A new two-phase sampling based algorithm for discovering association rules
    • Chen B, Haas P, Scheuermann P (2002) A new two-phase sampling based algorithm for discovering association rules. Proceedings of KDD 2002, pp 462-468
    • (2002) Proceedings of KDD 2002 , pp. 462-468
    • Chen, B.1    Haas, P.2    Scheuermann, P.3
  • 4
    • 49949111096 scopus 로고    scopus 로고
    • Processing top-k queries from samples
    • Cohen E, Grossaug N, Kaplan H (2008) Processing top-k queries from samples. Comput Netw 52(14): 2605-2622
    • (2008) Comput Netw , vol.52 , Issue.14 , pp. 2605-2622
    • Cohen, E.1    Grossaug, N.2    Kaplan, H.3
  • 5
    • 0032092365 scopus 로고    scopus 로고
    • New sampling-based summary statistics for improving approximate query answers
    • Gibbons PB, Matias Y (1998) New sampling-based summary statistics for improving approximate query answers. Proceedings of SIGMOD 1998, pp 331-342
    • (1998) Proceedings of SIGMOD 1998 , pp. 331-342
    • Gibbons, P.B.1    Matias, Y.2
  • 6
    • 85049139321 scopus 로고    scopus 로고
    • Static versus dynamic sampling for data mining
    • John GH, Langley P (1996) Static versus dynamic sampling for data mining. Proceedings of KDD 1996, pp 367-370
    • (1996) Proceedings of KDD 1996 , pp. 367-370
    • John, G.H.1    Langley, P.2
  • 7
    • 22944457185 scopus 로고    scopus 로고
    • Effective sampling for mining association rules
    • Li Y, Gopalan RP (2004) Effective sampling for mining association rules. Proceedings of AUS-AI 2004, pp 391-401
    • (2004) Proceedings of AUS-AI 2004 , pp. 391-401
    • Li, Y.1    Gopalan, R.P.2
  • 8
    • 0346354497 scopus 로고    scopus 로고
    • Approximate frequency counts over data streams
    • Manku GS, Motwani R (2002) Approximate frequency counts over data streams. Proceedings of VLDB 2002, pp 346-357
    • (2002) Proceedings of VLDB 2002 , pp. 346-357
    • Manku, G.S.1    Motwani, R.2
  • 9
    • 77049088731 scopus 로고    scopus 로고
    • Efficient computation of frequent and top-k elements in data streams
    • Metwally A, Agrawal D, El Abbadi A (2005) Efficient computation of frequent and top-k elements in data streams. Proceedings of ICDT 2005, pp 398-412
    • (2005) Proceedings of ICDT 2005 , pp. 398-412
    • Metwally, A.1    Agrawal, D.2    El Abbadi, A.3
  • 11
    • 78149344572 scopus 로고    scopus 로고
    • Efficient progressive sampling for association rules
    • Parthasarathy S (2002) Efficient progressive sampling for association rules. Proceedings of ICDM 2002, pp 354-361
    • (2002) Proceedings of ICDM 2002 , pp. 354-361
    • Parthasarathy, S.1
  • 13
    • 0002663969 scopus 로고    scopus 로고
    • Sampling large databases for association rules
    • Toivonen H (1996) Sampling large databases for association rules. Proceedings of VLDB 1996, pp 134-145
    • (1996) Proceedings of VLDB 1996 , pp. 134-145
    • Toivonen, H.1
  • 16
    • 33748448644 scopus 로고    scopus 로고
    • Mining top-K frequent itemsets from data streams
    • Wong RC-W, Fu AW-C (2006) Mining top-K frequent itemsets from data streams. Data Min Knowl Discov 13(2):193-217
    • (2006) Data Min Knowl Discov , vol.13 , Issue.2 , pp. 193-217
    • Wong, R.C.-W.1    Fu, A.W.-C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.