메뉴 건너뛰기




Volumn , Issue , 2010, Pages 17-18

A 1.2mW on-line learning mixed mode intelligent inference engine for robust object recognition

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION ACCURACY; CMOS PROCESSS; HIGH SPEED; LOW POWER; MIXED MODE; NEURO-FUZZY; ONLINE LEARNING; POWER CONSUMPTION; PROCESSING DELAY; RECOGNITION ACCURACY; ROBUST OBJECT RECOGNITION; US OPERATIONS;

EID: 77958011648     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/VLSIC.2010.5560256     Document Type: Conference Paper
Times cited : (13)

References (6)
  • 1
    • 70449374608 scopus 로고    scopus 로고
    • A 201.4GOPS 496mW real-time multi-object recognition processor with bio-inspired neural perception engine
    • Feb.
    • J.Y. Kim, et al., "A 201.4GOPS 496mW Real-Time Multi-Object Recognition Processor with Bio-Inspired Neural Perception Engine," in IEEE ISSCC, pp.150-151, Feb., 2009.
    • (2009) IEEE ISSCC , pp. 150-151
    • Kim, J.Y.1
  • 2
    • 77957981842 scopus 로고    scopus 로고
    • A 345mW heterogeneous many-core processor with an intelligent inference engine for robust object recognition
    • Feb. Session 18.4
    • S. Lee, et al., "A 345mW Heterogeneous Many-core Processor with an Intelligent Inference Engine for Robust Object Recognition," in IEEE ISSCC, Feb., 2010. Session 18.4
    • (2010) IEEE ISSCC
    • Lee, S.1
  • 3
    • 0027601884 scopus 로고
    • ANFIS: Adaptive-network-based fuzzy inference system
    • May
    • J. -S.R. Jang, "ANFIS: Adaptive-network-based fuzzy inference system," in IEEE Transactions on Systems, Man, and Cybernetics, vol. 23, no.3, pp.665-685, May 1993.
    • (1993) IEEE Transactions on Systems, Man, and Cybernetics , vol.23 , Issue.3 , pp. 665-685
    • Jang, J.-S.R.1
  • 4
    • 0345023260 scopus 로고
    • Weight perturbation: An optimal architecture and learning technique for analog VLSI feedforward and recurrent multilayer network
    • May
    • M. Jabri, "Weight Perturbation: An Optimal Architecture and Learning Technique for Analog VLSI Feedforward and Recurrent Multilayer Network," in Neural Computation, vol. 3, no. 4, pp. 546-564, May, 1991.
    • (1991) Neural Computation , vol.3 , Issue.4 , pp. 546-564
    • Jabri, M.1
  • 5
    • 0032185581 scopus 로고    scopus 로고
    • Analog versus digital: Extrapolating from electronics to neurobiology
    • Mar.
    • R. Sarpeshkar, "Analog Versus Digital: Extrapolating from Electronics to Neurobiology," in Neural Computation, vol. 10, pp. 1601-1038, Mar. 1998.
    • (1998) Neural Computation , vol.10 , pp. 1601-1038
    • Sarpeshkar, R.1
  • 6
    • 70449396776 scopus 로고    scopus 로고
    • A 22.8 GOPS 2.83mW neuro-fuzzy object detection engine for fast multi-object recognition
    • Jun.
    • M. Kim, et al., "A 22.8 GOPS 2.83mW Neuro-fuzzy Object Detection Engine for Fast Multi-object Recognition," in IEEE Symposium on VLSI. Jun., 2009.
    • (2009) IEEE Symposium on VLSI
    • Kim, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.