메뉴 건너뛰기




Volumn , Issue , 2010, Pages 392-395

Development and application of hourly building cooling load prediction model

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL NEURAL NETWORK; BUILDING COOLING LOAD; COOLING LOAD; PREDICTION MODEL;

EID: 77958000513     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICAEE.2010.5557536     Document Type: Conference Paper
Times cited : (9)

References (12)
  • 1
    • 0022488494 scopus 로고
    • A comparison of the admittance and fourier methods for predicting heating/cooling loads
    • M.S. Sodha, B. Kaur, A Kumar and N.K. Bansal, "A comparison of the admittance and fourier methods for predicting heating/cooling loads," Solar Energy, vol. 36, pp. 125-127, 1986.
    • (1986) Solar Energy , vol.36 , pp. 125-127
    • Sodha, M.S.1    Kaur, B.2    Kumar, A.3    Bansal, N.K.4
  • 2
    • 0024944194 scopus 로고
    • A correlation method for predicting monthly and armual cooling loads in direct gain passive solar heated buildings
    • J.S. Greg and AK. Robert, "A correlation method for predicting monthly and armual cooling loads in direct gain passive solar heated buildings," Energy Conversion and Management, vol. 29, pp. 175-187, 1989.
    • (1989) Energy Conversion and Management , vol.29 , pp. 175-187
    • Greg, J.S.1    Robert, A.K.2
  • 3
    • 0032050383 scopus 로고    scopus 로고
    • A simplified correlation method accounting for heating and cooling loads in energyefficient buildings
    • M. Bauer and J.L. Scartezzini, "A simplified correlation method accounting for heating and cooling loads in energyefficient buildings," Energy and Buildings, vol. 27, pp. 147-154, 1998.
    • (1998) Energy and Buildings , vol.27 , pp. 147-154
    • Bauer, M.1    Scartezzini, J.L.2
  • 4
    • 0346509534 scopus 로고    scopus 로고
    • Utilizing transfer function method for hourly cooling load calculation
    • O. M.A. AI-Rabghi and K. M. AI-Johani, "Utilizing transfer function method for hourly cooling load calculation," Energy Conversion and Management, vol. 38, pp. 319-332,1997.
    • (1997) Energy Conversion and Management , vol.38 , pp. 319-332
    • Ai-Rabghi, O.M.A.1    Ai-Johani, K.M.2
  • 5
    • 1642323621 scopus 로고    scopus 로고
    • Cooling load prediction for buildings using general regression neural networks
    • A E. Ben-Nakhi and M. A Mahmoud, "Cooling load prediction for buildings using general regression neural networks," Energy Conversion and Management, vol 45, pp. 2127-2141,2004.
    • (2004) Energy Conversion and Management , vol.45 , pp. 2127-2141
    • Ben-Nakhi, A.E.1    Mahmoud, M.A.2
  • 6
    • 33847009542 scopus 로고    scopus 로고
    • Cooling load calculations in subtropical climate
    • K.W. Mui and L.T. Wong, "Cooling load calculations in subtropical climate," Building and Environment, vol. 42, pp. 2498-2504,2007.
    • (2007) Building and Environment , vol.42 , pp. 2498-2504
    • Mui, K.W.1    Wong, L.T.2
  • 7
    • 0034963531 scopus 로고    scopus 로고
    • Artificial neural networks in renewable energy systems applications: A review
    • S. A Kalogiron, "Artificial neural networks in renewable energy systems applications: a review," Renewable and Sustainable Energy Reviews, vol. 5, pp. 373-400, 2001.
    • (2001) Renewable and Sustainable Energy Reviews , vol.5 , pp. 373-400
    • Kalogiron, S.A.1
  • 8
    • 25844500264 scopus 로고    scopus 로고
    • On-line building energy prediction using adaptive artificial neural networks
    • J. Yang, H. Rivard and R. Zmeureann, "On-line building energy prediction using adaptive artificial neural networks," Energy and Buildings, vol. 37, pp. 1250-1259,2005.
    • (2005) Energy and Buildings , vol.37 , pp. 1250-1259
    • Yang, J.1    Rivard, H.2    Zmeureann, R.3
  • 9
    • 13844306850 scopus 로고    scopus 로고
    • Prediction of hourly energy consumption in buildings based on a feedback artificial neural network
    • P. A Gonzalez and J. M. Zamarrefio, "Prediction of hourly energy consumption in buildings based on a feedback artificial neural network," Energy and Buildings, vol. 37, pp. 595-601, 2005.
    • (2005) Energy and Buildings , vol.37 , pp. 595-601
    • Gonzalez, P.A.1    Zamarrefio, J.M.2
  • 10
    • 64849083683 scopus 로고    scopus 로고
    • Applying support vector machine to predict hourly cooling load in the building
    • Q. Li, Q. Meng, J. Cai, H. Yoshino and A Mochida, "Applying support vector machine to predict hourly cooling load in the building," Applied Energy, vol. 86, pp. 2249-2256, 2009.
    • (2009) Applied Energy , vol.86 , pp. 2249-2256
    • Li, Q.1    Meng, Q.2    Cai, J.3    Yoshino, H.4    Mochida, A.5
  • 11
    • 56049088473 scopus 로고    scopus 로고
    • Predicting hourly cooling load in the building: A comparison of support vector machine and different artificial neural networks
    • Q. Li, Q. Meng, J. Cai, H. Yoshino and A Mochida, "Predicting hourly cooling load in the building: A comparison of support vector machine and different artificial neural networks," Energy Conversion and Management, vol. 50, pp. 90-96, 2009.
    • (2009) Energy Conversion and Management , vol.50 , pp. 90-96
    • Li, Q.1    Meng, Q.2    Cai, J.3    Yoshino, H.4    Mochida, A.5
  • 12
    • 77958020092 scopus 로고    scopus 로고
    • DeST 20051028, University of Tsinghua University, China
    • DeST 20051028, University of Tsinghua University, China


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.