-
1
-
-
0037011210
-
-
Carroll, R. L.; Gorman, C. B. Angew. Chem., Int. Ed. 2002, 41, 4378-4400
-
(2002)
Angew. Chem., Int. Ed.
, vol.41
, pp. 4378-4400
-
-
Carroll, R.L.1
Gorman, C.B.2
-
4
-
-
33748674458
-
-
Maslyuk, V. V.; Bagrets, A.; Meded, V.; Arnold, A.; Evers, F.; Brandbyge, M.; Bredow, T.; Mertig, I. Phys. Rev. Lett. 2006, 97, 097201-1-097201-4
-
(2006)
Phys. Rev. Lett.
, vol.97
, pp. 0972011-0972014
-
-
Maslyuk, V.V.1
Bagrets, A.2
Meded, V.3
Arnold, A.4
Evers, F.5
Brandbyge, M.6
Bredow, T.7
Mertig, I.8
-
5
-
-
34547326078
-
-
Koleini, M.; Paulsson, M.; Brandbyge, M. Phys. Rev. Lett. 2007, 98, 197202-1-197202-4
-
(2007)
Phys. Rev. Lett.
, vol.98
, pp. 1972021-1972024
-
-
Koleini, M.1
Paulsson, M.2
Brandbyge, M.3
-
6
-
-
62149085100
-
-
Mallajosyula, S. S.; Parida, P.; Pati, S. K. J. Mater. Chem. 2009, 19, 1761-1766
-
(2009)
J. Mater. Chem.
, vol.19
, pp. 1761-1766
-
-
Mallajosyula, S.S.1
Parida, P.2
Pati, S.K.3
-
7
-
-
61649127561
-
-
Wang, L.; Cai, Z.; Wang, J.; Lu, J.; Luo, G.; Lai, L.; Zhou, J.; Qin, R.; Gao, Z.; Yu, D.; Li, G.; Mei, W. N.; Sanvito, S. Nano Lett. 2008, 8, 3640-3644
-
(2008)
Nano Lett.
, vol.8
, pp. 3640-3644
-
-
Wang, L.1
Cai, Z.2
Wang, J.3
Lu, J.4
Luo, G.5
Lai, L.6
Zhou, J.7
Qin, R.8
Gao, Z.9
Yu, D.10
Li, G.11
Mei, W.N.12
Sanvito, S.13
-
8
-
-
70349158744
-
-
Shen, X.; Yi, Z.; Shen, Z.; Zhao, X.; Wu, J.; Hou, S.; Sanvito, S. Nanotechnology 2009, 20, 385401-1-385401-9
-
(2009)
Nanotechnology
, vol.20
, pp. 3854011-3854019
-
-
Shen, X.1
Yi, Z.2
Shen, Z.3
Zhao, X.4
Wu, J.5
Hou, S.6
Sanvito, S.7
-
9
-
-
41149153299
-
-
Zhou, L.; Yang, S.-W.; Ng, M.-F.; Sullivan, M. B.; Tan, V. B. C.; Shen, L. J. Am. Chem. Soc. 2008, 130, 4023-4027
-
(2008)
J. Am. Chem. Soc.
, vol.130
, pp. 4023-4027
-
-
Zhou, L.1
Yang, S.-W.2
Ng, M.-F.3
Sullivan, M.B.4
Tan, V.B.C.5
Shen, L.6
-
10
-
-
67049142678
-
-
Wu, J.-C.; Wang, X.-F.; Zhou, L.; Da, H.-X.; Lim, K. H.; Yang, S.-W.; Li, Z.-Y. J. Phys. Chem. C 2009, 113, 7913-7916
-
(2009)
J. Phys. Chem. C
, vol.113
, pp. 7913-7916
-
-
Wu, J.-C.1
Wang, X.-F.2
Zhou, L.3
Da, H.-X.4
Lim, K.H.5
Yang, S.-W.6
Li, Z.-Y.7
-
11
-
-
70349301640
-
-
Xu, K.; Huang, J.; Lei, S.; Su, H.; Boey, F. Y. C.; Li, Q.; Yang, J. J. Chem. Phys. 2009, 131, 104704-1-104704-6
-
(2009)
J. Chem. Phys.
, vol.131
, pp. 1047041-1047046
-
-
Xu, K.1
Huang, J.2
Lei, S.3
Su, H.4
Boey, F.Y.C.5
Li, Q.6
Yang, J.7
-
15
-
-
77957974614
-
-
The spin-filter performance of a system containing a europium- cyclooctatetraene sandwich structure has also been modeled (11)
-
The spin-filter performance of a system containing a europium- cyclooctatetraene sandwich structure has also been modeled (11)
-
-
-
-
17
-
-
57449110347
-
-
Foti, M. C.; Daquino, C.; Mackie, I. D.; DiLabio, G. A.; Ingold, K. U. J. Org. Chem. 2008, 73, 9270-9282
-
(2008)
J. Org. Chem.
, vol.73
, pp. 9270-9282
-
-
Foti, M.C.1
Daquino, C.2
MacKie, I.D.3
Dilabio, G.A.4
Ingold, K.U.5
-
18
-
-
77957989209
-
-
Recent theoretical work by Tagami and Tsukada on a large, polyphenoxyl radical suggests that radicals could be used in this respect (13)
-
Recent theoretical work by Tagami and Tsukada on a large, polyphenoxyl radical suggests that radicals could be used in this respect (13)
-
-
-
-
19
-
-
77949836369
-
-
Herrmann, C.; Solomon, G. C.; Ratner, M. A. J. Am. Chem. Soc. 2010, 132, 3682-3684
-
(2010)
J. Am. Chem. Soc.
, vol.132
, pp. 3682-3684
-
-
Herrmann, C.1
Solomon, G.C.2
Ratner, M.A.3
-
20
-
-
33847703796
-
-
Venkataraman, L.; Park, Y. S.; Whalley, A. C.; Nuckolls, C.; Hybertsen, M. S.; Steigerwald, M. L. Nano Lett. 2007, 7, 502-506
-
(2007)
Nano Lett.
, vol.7
, pp. 502-506
-
-
Venkataraman, L.1
Park, Y.S.2
Whalley, A.C.3
Nuckolls, C.4
Hybertsen, M.S.5
Steigerwald, M.L.6
-
21
-
-
77957986605
-
-
Gold-thiol linkages have been used extensively in the past to bridge small gaps created in break-junction experiments. (22) However, Wu et al. demonstrated recently that gold-amine linkages allow for electron transport through molecules that are within an order of magnitude of that achieved with gold-sulfur linkages (23)
-
Gold-thiol linkages have been used extensively in the past to bridge small gaps created in break-junction experiments. (22) However, Wu et al. demonstrated recently that gold-amine linkages allow for electron transport through molecules that are within an order of magnitude of that achieved with gold-sulfur linkages (23)
-
-
-
-
23
-
-
51349121405
-
-
Wu, S.; González, M. T.; Huber, R.; Grunder, S.; Mayor, M.; Schönenberger, C.; Calame, M. Nat. Nanotechnol. 2008, 3, 569-574
-
(2008)
Nat. Nanotechnol.
, vol.3
, pp. 569-574
-
-
Wu, S.1
González, M.T.2
Huber, R.3
Grunder, S.4
Mayor, M.5
Schönenberger, C.6
Calame, M.7
-
24
-
-
0038626673
-
-
Revision B.03; Gaussian, Inc.: Wallingford, CT
-
Frisch, M. J.; et al. Gaussian 03, Revision B.03; Gaussian, Inc.: Wallingford, CT, 2004.
-
(2004)
Gaussian 03
-
-
Frisch, M.J.1
-
26
-
-
0345491105
-
-
Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785-789
-
(1988)
Phys. Rev. B
, vol.37
, pp. 785-789
-
-
Lee, C.1
Yang, W.2
Parr, R.G.3
-
27
-
-
0000352837
-
-
Ross, R. B.; Powers, J. M.; Atashroo, T.; Ermler, W. C.; LaJohn, L. A.; Christiansen, P. A. J. Chem. Phys. 1990, 93, 6654-6670
-
(1990)
J. Chem. Phys.
, vol.93
, pp. 6654-6670
-
-
Ross, R.B.1
Powers, J.M.2
Atashroo, T.3
Ermler, W.C.4
Lajohn, L.A.5
Christiansen, P.A.6
-
28
-
-
77957979749
-
-
In an actual two-probe system the molecule would relax its geometry according to the positions of the electrodes. In these calculations the goal was to maximize the MO overlap between the electrodes and the molecule and this was achieved by also optimizing the position of the electrodes relative to each other
-
In an actual two-probe system the molecule would relax its geometry according to the positions of the electrodes. In these calculations the goal was to maximize the MO overlap between the electrodes and the molecule and this was achieved by also optimizing the position of the electrodes relative to each other.
-
-
-
-
29
-
-
4243720937
-
-
Taylor, J.; Guo, H.; Wang, J. Phys. Rev. B 2001, 63, 245407-1-24507-13
-
(2001)
Phys. Rev. B
, vol.63
, pp. 24540701-2450713
-
-
Taylor, J.1
Guo, H.2
Wang, J.3
-
30
-
-
33646358255
-
-
Waldron, D.; Haney, P.; Larade, B.; MacDonald, A.; Guo, H. Phys. Rev. Lett. 2006, 96, 166804-1-166804-4
-
(2006)
Phys. Rev. Lett.
, vol.96
, pp. 1668041-1668044
-
-
Waldron, D.1
Haney, P.2
Larade, B.3
MacDonald, A.4
Guo, H.5
-
32
-
-
0000821265
-
-
Lopez Sancho, M. P.; Lopez Sancho, J. M.; Rubio, J. J. Phys. F 1984, 14, 1205-1215
-
(1984)
J. Phys. F
, vol.14
, pp. 1205-1215
-
-
Lopez Sancho, M.P.1
Lopez Sancho, J.M.2
Rubio, J.3
-
33
-
-
8744270531
-
-
Büttiker, M.; Imry, Y.; Landauer, R.; Pinhas, S. Phys. Rev. B 1985, 31, 6207-6215
-
(1985)
Phys. Rev. B
, vol.31
, pp. 6207-6215
-
-
Büttiker, M.1
Imry, Y.2
Landauer, R.3
Pinhas, S.4
-
39
-
-
34249911200
-
-
Ke, S.-H.; Baranger, H. U.; Yang, W. J. Chem. Phys. 2007, 126, 201102
-
(2007)
J. Chem. Phys.
, vol.126
, pp. 201102
-
-
Ke, S.-H.1
Baranger, H.U.2
Yang, W.3
-
40
-
-
77957997604
-
-
One or more scattering states can be attributed to any transmission peak, which can then be projected onto the MOs of the molecule to determine which ones contribute to transmission at a particular energy. Each transmission peak is assigned to the MO that contributes the largest amount to its scattering states. Details on scattering states can be found in ref 29
-
One or more scattering states can be attributed to any transmission peak, which can then be projected onto the MOs of the molecule to determine which ones contribute to transmission at a particular energy. Each transmission peak is assigned to the MO that contributes the largest amount to its scattering states. Details on scattering states can be found in ref 29.
-
-
-
-
41
-
-
77957997328
-
-
There are some sharp peaks labeled "lead" which are indeed due to high density of states in the electrodes at those particular energies and do not correspond to transmission through a particular MO
-
There are some sharp peaks labeled "lead" which are indeed due to high density of states in the electrodes at those particular energies and do not correspond to transmission through a particular MO.
-
-
-
-
42
-
-
77958001954
-
-
We use this nomenclature to emphasize the relationship between these MOs. The SOMO is an α MO and the SUMO is its β analogue
-
We use this nomenclature to emphasize the relationship between these MOs. The SOMO is an α MO and the SUMO is its β analogue.
-
-
-
-
43
-
-
77957983115
-
-
F opens the possibility for transport mechanisms other than resonant tunneling, which includes inelastic tunneling and charge hopping. Although the Landauer approach we used neglects these, we believe that resonant tunneling dominates at low bias for our small molecular system and that the other transport mechanisms play a relatively minimal role. This is because the likelihood for inelastic tunneling is proportional to the bias window, and charge hopping is unlikely for such small molecules that are well coupled to the electrodes, as studied in this work
-
F opens the possibility for transport mechanisms other than resonant tunneling, which includes inelastic tunneling and charge hopping. Although the Landauer approach we used neglects these, we believe that resonant tunneling dominates at low bias for our small molecular system and that the other transport mechanisms play a relatively minimal role. This is because the likelihood for inelastic tunneling is proportional to the bias window, and charge hopping is unlikely for such small molecules that are well coupled to the electrodes, as studied in this work.
-
-
-
-
44
-
-
77958002698
-
-
2 groups leads to an attenuation of this effect
-
2 groups leads to an attenuation of this effect.
-
-
-
-
46
-
-
2442711469
-
-
Pratt, D. A.; DiLabio, G. A.; Mulder, P.; Ingold, K. U. Acc. Chem. Res. 2004, 37, 334-340
-
(2004)
Acc. Chem. Res.
, vol.37
, pp. 334-340
-
-
Pratt, D.A.1
Dilabio, G.A.2
Mulder, P.3
Ingold, K.U.4
-
47
-
-
77958014773
-
-
All values reported in this table were obtained with the methodology used for the transport calculations
-
All values reported in this table were obtained with the methodology used for the transport calculations.
-
-
-
-
48
-
-
0001107787
-
-
DiLabio, G. A.; Pratt, D. A.; LoFaro, A. D.; Wright, J. S. J. Phys. Chem. A 1999, 103, 1653-1661
-
(1999)
J. Phys. Chem. A
, vol.103
, pp. 1653-1661
-
-
Dilabio, G.A.1
Pratt, D.A.2
Lofaro, A.D.3
Wright, J.S.4
-
49
-
-
58149493247
-
-
Solomon, G. C.; Andrews, D. Q.; Van Duyne, R. P.; Ratner, M. A. ChemPhysChem. 2009, 10, 257-264
-
(2009)
ChemPhysChem.
, vol.10
, pp. 257-264
-
-
Solomon, G.C.1
Andrews, D.Q.2
Van Duyne, R.P.3
Ratner, M.A.4
-
50
-
-
77958000626
-
-
F differs between bulk leads and leads that are very thin and essentially one-dimensional
-
F differs between bulk leads and leads that are very thin and essentially one-dimensional.
-
-
-
|