-
1
-
-
84952787536
-
The theory of the opalescence of homogeneous fluids and liquid mixtures near the critical state
-
ANPYA2, 0003-3804, 10.1002/andp.19043190707, ANPYA2, 0003-3804, 10.1002/andp.19103381612.
-
Einstein A. Einstein A. The theory of the opalescence of homogeneous fluids and liquid mixtures near the critical state. Ann. Phys. 1910, 33:1275-1298. ANPYA2, 0003-3804, 10.1002/andp.19043190707, ANPYA2, 0003-3804, 10.1002/andp.19103381612,.
-
(1910)
Ann. Phys.
, vol.33
, pp. 1275-1298
-
-
Einstein, A.1
Einstein, A.2
-
2
-
-
11944275906
-
Erratum: Riemannian geometry in thermodynamic fluctuation theory
-
RMPHAT, 0034-6861, 10.1103/RevModPhys.67.605, RMPHAT, 0034-6861, 10.1103/RevModPhys.68.313, (E) .
-
Ruppeiner G. Ruppeiner G. Erratum: Riemannian geometry in thermodynamic fluctuation theory. Rev. Mod. Phys. 1996, 68:313. RMPHAT, 0034-6861, 10.1103/RevModPhys.67.605, RMPHAT, 0034-6861, 10.1103/RevModPhys.68.313, (E).
-
(1996)
Rev. Mod. Phys.
, vol.68
, pp. 313
-
-
Ruppeiner, G.1
Ruppeiner, G.2
-
3
-
-
0004049101
-
-
(Wiley, New York). A gas of electromagnetic radiation with S=S(U,V) is discussed in Sec. 3-6.
-
Callen H.B. Thermodynamics and an Introduction to Thermostatistics 1985, (Wiley, New York). A gas of electromagnetic radiation with S=S(U,V) is discussed in Sec. 3-6.
-
(1985)
Thermodynamics and an Introduction to Thermostatistics
-
-
Callen, H.B.1
-
6
-
-
77957965043
-
-
0→∞, the choice of boundary conditions doesn't matter.
-
0→∞, the choice of boundary conditions doesn't matter.
-
-
-
-
7
-
-
0001064534
-
Fluctuations and nonlinear irreversible processes
-
PLRAAN, 1050-2947, 10.1103/PhysRevA.19.1747, and The full treatment is given here, with an arbitrary number of variables. The physics deals with irreversible thermodynamics, and so is different from that in this paper. But the mathematical reasoning should be analogous.
-
Grabert H. Green M.S. Fluctuations and nonlinear irreversible processes. Phys. Rev. 1979, 19:1747-1756. PLRAAN, 1050-2947, 10.1103/PhysRevA.19.1747, The full treatment is given here, with an arbitrary number of variables. The physics deals with irreversible thermodynamics, and so is different from that in this paper. But the mathematical reasoning should be analogous.
-
(1979)
Phys. Rev. A
, vol.19
, pp. 1747-1756
-
-
Grabert, H.1
Green, M.S.2
-
8
-
-
77957957700
-
-
We may easily verify preservation of normalization by integrating both sides of Eq. with respect to x and setting P(x,t) and its first derivative to zero at the limiting values of x.
-
We may easily verify preservation of normalization by integrating both sides of Eq. with respect to x and setting P(x,t) and its first derivative to zero at the limiting values of x.
-
-
-
-
9
-
-
0000928366
-
Covariant formulation of non-equilibrium statistical thermodynamics
-
ZPBBDJ, 0340-224X, 10.1007/BF01570750.
-
Graham R. Covariant formulation of non-equilibrium statistical thermodynamics. Z. Phys. B 1977, 26:397-405. ZPBBDJ, 0340-224X, 10.1007/BF01570750.
-
(1977)
Z. Phys. B
, vol.26
, pp. 397-405
-
-
Graham, R.1
-
10
-
-
26544459076
-
New thermodynamic fluctuation theory using path integrals
-
PLRAAN, 1050-2947, 10.1103/PhysRevA.27.1116.
-
Ruppeiner G. New thermodynamic fluctuation theory using path integrals. Phys. Rev. A 1983, 27:1116-1133. PLRAAN, 1050-2947, 10.1103/PhysRevA.27.1116.
-
(1983)
Phys. Rev. A
, vol.27
, pp. 1116-1133
-
-
Ruppeiner, G.1
-
11
-
-
4243756912
-
Thermodynamic critical fluctuation theory?
-
PRLTAO, 0031-9007, 10.1103/PhysRevLett.50.287.
-
Ruppeiner G. Thermodynamic critical fluctuation theory?. Phys. Rev. Lett. 1983, 50:287-290. PRLTAO, 0031-9007, 10.1103/PhysRevLett.50.287.
-
(1983)
Phys. Rev. Lett.
, vol.50
, pp. 287-290
-
-
Ruppeiner, G.1
-
12
-
-
26344438448
-
Covariant evolution equation for the thermodynamic fluctuations
-
PLRAAN, 1050-2947, 10.1103/PhysRevA.31.3415
-
Diósi L. Lukács B. Covariant evolution equation for the thermodynamic fluctuations. Phys. Rev. A 1985, 31:3415-3418. PLRAAN, 1050-2947, 10.1103/PhysRevA.31.3415.
-
(1985)
Phys. Rev. A
, vol.31
, pp. 3415-3418
-
-
Diósi, L.1
Lukács, B.2
-
13
-
-
33646974817
-
Thermodynamics: A Riemannian geometric model
-
PLRAAN, 1050-2947, 10.1103/PhysRevA.20.1608.
-
Ruppeiner G. Thermodynamics: A Riemannian geometric model. Phys. Rev. A 1979, 20:1608-1613. PLRAAN, 1050-2947, 10.1103/PhysRevA.20.1608.
-
(1979)
Phys. Rev. A
, vol.20
, pp. 1608-1613
-
-
Ruppeiner, G.1
-
14
-
-
11744314591
-
Thermodynamics and geometry
-
PHTOAD, 0031-9228, 10.1063/1.3023366.
-
Weinhold F. Thermodynamics and geometry. Phys. Today 1976, 29(3):23-30. PHTOAD, 0031-9228, 10.1063/1.3023366.
-
(1976)
Phys. Today
, vol.29
, Issue.3
, pp. 23-30
-
-
Weinhold, F.1
-
15
-
-
0021483639
-
Thermodynamics in finite time
-
PHTOAD, 0031-9228, 10.1063/1.2916405
-
Andresen B. Salamon P. Berry R.S. Thermodynamics in finite time. Phys. Today 1984, 37(9):62-70. PHTOAD, 0031-9228, 10.1063/1.2916405.
-
(1984)
Phys. Today
, vol.37
, Issue.9
, pp. 62-70
-
-
Andresen, B.1
Salamon, P.2
Berry, R.S.3
-
16
-
-
17644362523
-
The critical point and scaling theory
-
PHYSAG, 0031-8914, 10.1016/0031-8914(74)90228-6.
-
Widom B. The critical point and scaling theory. Physica (Amsterdam) 1974, 73:107-118. PHYSAG, 0031-8914, 10.1016/0031-8914(74)90228-6.
-
(1974)
Physica (Amsterdam)
, vol.73
, pp. 107-118
-
-
Widom, B.1
-
17
-
-
4243348920
-
Application of Riemannian geometry to the thermodynamics of a simple fluctuating magnetic system
-
PLRAAN, 1050-2947, 10.1103/PhysRevA.24.488.
-
Ruppeiner G. Application of Riemannian geometry to the thermodynamics of a simple fluctuating magnetic system. Phys. Rev. A 1981, 24:488-492. PLRAAN, 1050-2947, 10.1103/PhysRevA.24.488.
-
(1981)
Phys. Rev. A
, vol.24
, pp. 488-492
-
-
Ruppeiner, G.1
-
18
-
-
27244445864
-
Thermodynamic curvature of a one-dimensional fluid
-
JCPSA6, 0021-9606, 10.1063/1.457828
-
Ruppeiner G. Chance J. Thermodynamic curvature of a one-dimensional fluid. J. Chem. Phys. 1990, 92:3700-3709. JCPSA6, 0021-9606, 10.1063/1.457828.
-
(1990)
J. Chem. Phys.
, vol.92
, pp. 3700-3709
-
-
Ruppeiner, G.1
Chance, J.2
-
19
-
-
0001173383
-
Geometrical aspects of statistical mechanics
-
PLEEE8, 1063-651X, 10.1103/PhysRevE.51.1006
-
Brody D. Rivier N. Geometrical aspects of statistical mechanics. Phys. Rev. E 1995, 51:1006-1011. PLEEE8, 1063-651X, 10.1103/PhysRevE.51.1006.
-
(1995)
Phys. Rev. E
, vol.51
, pp. 1006-1011
-
-
Brody, D.1
Rivier, N.2
-
20
-
-
0042993178
-
Geometry and thermodynamic fluctuations of the Ising model on a Bethe lattice
-
PRLAAZ, 0950-1207, 10.1098/rspa.1998.0274.
-
Dolan B.P. Geometry and thermodynamic fluctuations of the Ising model on a Bethe lattice. Proc. R. Soc. London, Ser. A 1998, 454:2655-2665. PRLAAZ, 0950-1207, 10.1098/rspa.1998.0274.
-
(1998)
Proc. R. Soc. London, Ser. A
, vol.454
, pp. 2655-2665
-
-
Dolan, B.P.1
-
21
-
-
0036828343
-
The information geometry of the one-dimensional Potts model
-
JPHAC5, 0305-4470, 10.1088/0305-4470/35/43/303
-
Dolan B.P. Johnston D.A. Kenna R. The information geometry of the one-dimensional Potts model. J. Phys. A 2002, 35:9025-9035. JPHAC5, 0305-4470, 10.1088/0305-4470/35/43/303.
-
(2002)
J. Phys. A
, vol.35
, pp. 9025-9035
-
-
Dolan, B.P.1
Johnston, D.A.2
Kenna, R.3
-
22
-
-
41349109075
-
Information geometry of the Ising model on planar random graphs
-
PLEEE8, 1063-651X, 10.1103/PhysRevE.66.056119
-
Janke W. Johnston D.A. Malmini R.P. K. C. Information geometry of the Ising model on planar random graphs. Phys. Rev. E 2002, 66:056119. PLEEE8, 1063-651X, 10.1103/PhysRevE.66.056119.
-
(2002)
Phys. Rev. E
, vol.66
, pp. 056119
-
-
Janke, W.1
Johnston, D.A.2
Malmini, R.P.K.C.3
-
23
-
-
0038203618
-
Information geometry of the spherical model
-
PLEEE8, 1063-651X, 10.1103/PhysRevE.67.046106
-
Janke W. Johnston D.A. Kenna R. Information geometry of the spherical model. Phys. Rev. E 2003, 67:046106. PLEEE8, 1063-651X, 10.1103/PhysRevE.67.046106.
-
(2003)
Phys. Rev. E
, vol.67
, pp. 046106
-
-
Janke, W.1
Johnston, D.A.2
Kenna, R.3
-
24
-
-
0037970189
-
Information geometry of finite Ising models
-
JGPHE5, 0393-0440, 10.1016/S0393-0440(02)00190-0
-
Brody D.C. Ritz A. Information geometry of finite Ising models. J. Geom. Phys. 2003, 47:207-220. JGPHE5, 0393-0440, 10.1016/S0393-0440(02)00190-0.
-
(2003)
J. Geom. Phys.
, vol.47
, pp. 207-220
-
-
Brody, D.C.1
Ritz, A.2
-
25
-
-
0142258858
-
Information geometry, one, two, three (and four)
-
APOBBB, 0587-4254
-
Johnston D.A. Janke W. Kenna R. Information geometry, one, two, three (and four). Acta Phys. Pol. B 2003, 34:4923-4937. APOBBB, 0587-4254.
-
(2003)
Acta Phys. Pol. B
, vol.34
, pp. 4923-4937
-
-
Johnston, D.A.1
Janke, W.2
Kenna, R.3
-
26
-
-
0011567854
-
Riemannian geometry and stability of ideal quantum gases
-
JPHAC5, 0305-4470, 10.1088/0305-4470/23/4/016
-
Janyszek H. Mrugała R. Riemannian geometry and stability of ideal quantum gases. J. Phys. A 1990, 23:467-476. JPHAC5, 0305-4470, 10.1088/0305-4470/23/4/016.
-
(1990)
J. Phys. A
, vol.23
, pp. 467-476
-
-
Janyszek, H.1
Mrugała, R.2
-
27
-
-
47649094879
-
Thermodynamic curvature and phase transitions in Kerr-Newman black holes
-
PRVDAQ, 0556-2821, 10.1103/PhysRevD.78.024016.
-
Ruppeiner G. Thermodynamic curvature and phase transitions in Kerr-Newman black holes. Phys. Rev. D 2008, 78:024016. PRVDAQ, 0556-2821, 10.1103/PhysRevD.78.024016.
-
(2008)
Phys. Rev. D
, vol.78
, pp. 024016
-
-
Ruppeiner, G.1
-
28
-
-
77957949958
-
-
αβ always constitute a positive-definite matrix for ordinary fluid and magnetic systems, regardless the sign of R. The Bose and Fermi gasses both illustrate this property. A good, pu
-
αβ always constitute a positive-definite matrix for ordinary fluid and magnetic systems, regardless the sign of R. The Bose and Fermi gasses both illustrate this property. A good, purely geometric, example is offered by the sphere and the pseudosphere in the Appendix.
-
-
-
-
30
-
-
0000295764
-
Riemannian geometry and the thermodynamics of model magnetic systems
-
PLRAAN, 1050-2947, 10.1103/PhysRevA.39.6515
-
Janyszek H. Mrugała R. Riemannian geometry and the thermodynamics of model magnetic systems. Phys. Rev. A 1989, 39:6515-6523. PLRAAN, 1050-2947, 10.1103/PhysRevA.39.6515.
-
(1989)
Phys. Rev. A
, vol.39
, pp. 6515-6523
-
-
Janyszek, H.1
Mrugała, R.2
-
31
-
-
64549100174
-
Information geometry in vapour-liquid equilibrium
-
1751-8113, 10.1088/1751-8113/42/2/023001
-
Brody D.C. Hook D.W. Information geometry in vapour-liquid equilibrium. J. Phys. A: Math. Theor. 2009, 42:023001. 1751-8113, 10.1088/1751-8113/42/2/023001.
-
(2009)
J. Phys. A: Math. Theor.
, vol.42
, pp. 023001
-
-
Brody, D.C.1
Hook, D.W.2
-
32
-
-
27244437866
-
Equations of state of large gravitating gas clouds
-
ASJOAB, 0004-637X, 10.1086/177345.
-
Ruppeiner G. Equations of state of large gravitating gas clouds. Astrophys. J. 1996, 464:547-555. ASJOAB, 0004-637X, 10.1086/177345.
-
(1996)
Astrophys. J.
, vol.464
, pp. 547-555
-
-
Ruppeiner, G.1
-
33
-
-
4243195219
-
Thermodynamic curvature of the multicomponent ideal gas
-
PLRAAN, 1050-2947, 10.1103/PhysRevA.41.2200
-
Ruppeiner G. Davis C. Thermodynamic curvature of the multicomponent ideal gas. Phys. Rev. A 1990, 41:2200-2202. PLRAAN, 1050-2947, 10.1103/PhysRevA.41.2200.
-
(1990)
Phys. Rev. A
, vol.41
, pp. 2200-2202
-
-
Ruppeiner, G.1
Davis, C.2
-
34
-
-
68949142777
-
Nonperturbative thermodynamic geometry of anyon gas
-
PLEEE8, 1063-651X, 10.1103/PhysRevE.80.011132
-
Mirza B. Mohammadzadeh H. Nonperturbative thermodynamic geometry of anyon gas. Phys. Rev. E 2009, 80:011132. PLEEE8, 1063-651X, 10.1103/PhysRevE.80.011132.
-
(2009)
Phys. Rev. E
, vol.80
, pp. 011132
-
-
Mirza, B.1
Mohammadzadeh, H.2
-
35
-
-
4243080119
-
Pauli paramagnetic gas in the framework of Riemannian geometry
-
PLEEE8, 1063-651X, 10.1103/PhysRevE.60.3520
-
Kaviani K. Dalafi-Rezaie A. Pauli paramagnetic gas in the framework of Riemannian geometry. Phys. Rev. E 1999, 60:3520-3525. PLEEE8, 1063-651X, 10.1103/PhysRevE.60.3520.
-
(1999)
Phys. Rev. E
, vol.60
, pp. 3520-3525
-
-
Kaviani, K.1
Dalafi-Rezaie, A.2
-
36
-
-
0038449945
-
Black-hole thermodynamics
-
PHTOAD, 0031-9228, 10.1063/1.2913906.
-
Bekenstein J.D. Black-hole thermodynamics. Phys. Today 1980, 33(1):24-31. PHTOAD, 0031-9228, 10.1063/1.2913906.
-
(1980)
Phys. Today
, vol.33
, Issue.1
, pp. 24-31
-
-
Bekenstein, J.D.1
-
37
-
-
34250884704
-
Ruppeiner theory of black hole thermodynamics
-
JPCSDZ, 1742-6588
-
Åman J.E. Bedford J. Grumiller D. Pidokrajt N. Ward J. Ruppeiner theory of black hole thermodynamics. J. Phys.: Conf. Ser. 2007, 66:012007. JPCSDZ, 1742-6588.
-
(2007)
J. Phys.: Conf. Ser.
, vol.66
, pp. 012007
-
-
Åman, J.E.1
Bedford, J.2
Grumiller, D.3
Pidokrajt, N.4
Ward, J.5
-
38
-
-
33749182401
-
Riemannian geometric theory of critical phenomena
-
PLRAAN, 1050-2947, 10.1103/PhysRevA.44.3583.
-
Ruppeiner G. Riemannian geometric theory of critical phenomena. Phys. Rev. A 1991, 44:3583-3595. PLRAAN, 1050-2947, 10.1103/PhysRevA.44.3583.
-
(1991)
Phys. Rev. A
, vol.44
, pp. 3583-3595
-
-
Ruppeiner, G.1
-
43
-
-
34548553825
-
Thermodynamic geometry and the metrics of Weinhold and Gilmore
-
PLRAAN, 1050-2947, 10.1103/PhysRevA.37.845
-
Andresen B. Berry R.S. Gilmore R. Ihrig E. Salamon P. Thermodynamic geometry and the metrics of Weinhold and Gilmore. Phys. Rev. A 1988, 37:845-848. PLRAAN, 1050-2947, 10.1103/PhysRevA.37.845.
-
(1988)
Phys. Rev. A
, vol.37
, pp. 845-848
-
-
Andresen, B.1
Berry, R.S.2
Gilmore, R.3
Ihrig, E.4
Salamon, P.5
|