메뉴 건너뛰기




Volumn , Issue , 2008, Pages

A novel validity measure for clusters of arbitrary shapes and densities

Author keywords

[No Author keywords available]

Indexed keywords

PATTERN RECOGNITION;

EID: 77957935779     PISSN: 10514651     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/icpr.2008.4761242     Document Type: Conference Paper
Times cited : (15)

References (15)
  • 1
    • 0004185151 scopus 로고
    • Wiley Series in Probability and Mathematical Statistics
    • J.A. Hartigan, Clustering Algorithms, Wiley Series in Probability and Mathematical Statistics, 1975.
    • (1975) Clustering Algorithms
    • Hartigan, J.A.1
  • 2
    • 21944442892 scopus 로고    scopus 로고
    • BIRCH: An efficient data clustering method for very large data sets
    • T. Zhang, R. Ramakrishnan, and M. Linvy, BIRCH: An efficient data clustering method for very large data sets. Data Mining and Knowledge Discovery, 1997, 1(2): 141-182.
    • (1997) Data Mining and Knowledge Discovery , vol.1 , Issue.2 , pp. 141-182
    • Zhang, T.1    Ramakrishnan, R.2    Linvy, M.3
  • 4
    • 0003136237 scopus 로고
    • Efficient and effective clustering methods for spatial data mining
    • R.T. Ng, and J. Han, Efficient and Effective Clustering Methods for Spatial Data Mining, VLDB, 1994, pp.144-155.
    • (1994) VLDB , pp. 144-155
    • Ng, R.T.1    Han, J.2
  • 6
    • 85140527321 scopus 로고    scopus 로고
    • An efficient approach for clustering large multidimensional data base with noise
    • A. Hinneburg, and D. Keim, An efficient approach for clustering large multidimensional data base with noise, KDD 1998, pp.58-65.
    • KDD 1998 , pp. 58-65
    • Hinneburg, A.1    Keim, D.2
  • 7
    • 26944461753 scopus 로고    scopus 로고
    • Finding clusters of different sizes, shapes, and densities in noisy, high dimensional data
    • San Francisco, CA, USA, May
    • L. Ertöz, M. Steinbach, and V. Kumar, Finding clusters of different sizes, shapes, and densities in noisy, high dimensional data. In SIAM International Conference on Data Mining, San Francisco, CA, USA, May 2003, pp.47-58.
    • (2003) SIAM International Conference on Data Mining , pp. 47-58
    • Ertöz, L.1    Steinbach, M.2    Kumar, V.3
  • 8
    • 0032686723 scopus 로고    scopus 로고
    • CHAMELEON: A hierarchical clustering algorithm using dynamic modeling
    • G. Karypis, E. H. Han and V. Kumar, CHAMELEON: A hierarchical clustering algorithm using dynamic modeling, Computer 32(8): 68-75, 1999.
    • (1999) Computer , vol.32 , Issue.8 , pp. 68-75
    • Karypis, G.1    Han, E.H.2    Kumar, V.3
  • 9
    • 62349112570 scopus 로고    scopus 로고
    • Discovering connected patterns in gene expression arrays
    • Hawaii, USA, April
    • N.A. Yousri, M.A. Ismail and M.S. Kamel, Discovering Connected Patterns in Gene Expression Arrays, IEEE CIBCB, Hawaii, USA, April 2007, pp. 113-120.
    • (2007) IEEE CIBCB , pp. 113-120
    • Yousri, N.A.1    Ismail, M.A.2    Kamel, M.S.3
  • 11
    • 77957937407 scopus 로고    scopus 로고
    • http://mlearn.ics.uci.edu/MLSummary.html.
  • 12
    • 84941155240 scopus 로고
    • Well separated clusters and optimal fuzzy partitions
    • J. C. Dunn, Well separated clusters and optimal fuzzy partitions, J. Cybern. Vol.4, pp. 95-104, 1974.
    • (1974) J. Cybern. , vol.4 , pp. 95-104
    • Dunn, J.C.1
  • 13
    • 0026204245 scopus 로고
    • A validity measure for fuzzy clustering
    • X. L Xie, G. Beni, A Validity measure for Fuzzy Clustering, IEEE TPAMI, Vol.13, Issue 8, 1991, pp.841-847.
    • (1991) IEEE TPAMI , vol.13 , Issue.8 , pp. 841-847
    • Xie, X.L.1    Beni, G.2
  • 14
    • 0017953820 scopus 로고
    • A cluster separation measure
    • D.L Davies, D.W. Bouldin, A cluster separation measure. IEEE TPAMI, Vol. 1, No 4, 1979, pp. 224-227.
    • (1979) IEEE TPAMI , vol.1 , Issue.4 , pp. 224-227
    • Davies, D.L.1    Bouldin, D.W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.