메뉴 건너뛰기




Volumn 11, Issue 1, 2011, Pages 891-899

Differential evolution classifier in noisy settings and with interacting variables

Author keywords

Classification; Differential Evolution Algorithm; Evolutionary Algorithm; Noisy Data; Variable Interaction

Indexed keywords

CLASSIFICATION; CLASSIFICATION ACCURACY; CLASSIFICATION RESULTS; DATA SETS; DIFFERENTIAL EVOLUTION; DIFFERENTIAL EVOLUTION ALGORITHMS; EXTRA VARIABLES; GAUSSIAN NOISE; HUNGARIANS; INTERACTION EFFECT; NOISE TOLERANCE; NOISY DATA; STATLOG; TEST DATA; TWO-COMPONENT; VARIABLE INTERACTION;

EID: 77957913274     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2010.01.009     Document Type: Article
Times cited : (22)

References (29)
  • 3
    • 2942596534 scopus 로고    scopus 로고
    • Ensemble machine learning on gene expression data for cancer classification
    • A.C. Tan, and D. Gilbert Ensemble machine learning on gene expression data for cancer classification Applied Bioinformatics 2 2003 75 83
    • (2003) Applied Bioinformatics , vol.2 , pp. 75-83
    • Tan, A.C.1    Gilbert, D.2
  • 4
    • 0038724544 scopus 로고    scopus 로고
    • Boosting and microarray data
    • P.M. Long, and V.B. Vega Boosting and microarray data Machine Learning 52 2003 31 44
    • (2003) Machine Learning , vol.52 , pp. 31-44
    • Long, P.M.1    Vega, V.B.2
  • 5
    • 31544483641 scopus 로고    scopus 로고
    • Classification ensembles for unbalanced class sizes in predictive toxicology
    • J.J. Chen, C.A. Tsai, J.F. Yuong, and R.L. Kodell Classification ensembles for unbalanced class sizes in predictive toxicology SAR QSAR Environ Res 16 2005 517 529
    • (2005) SAR QSAR Environ Res , vol.16 , pp. 517-529
    • Chen, J.J.1    Tsai, C.A.2    Yuong, J.F.3    Kodell, R.L.4
  • 6
    • 84866873533 scopus 로고    scopus 로고
    • A Classification method based on principal component analysis differential evolution algorithm applied for prediction diagnosis from clinical EMR heart data sets
    • Ed. Yoel Tenne and Chi-Keong Goh, Springer 2010, in press
    • Luukka, P., Lampinen, J. A Classification method based on principal component analysis differential evolution algorithm applied for prediction diagnosis from clinical EMR heart data sets. Computational Intelligence in Optimization: Applications and Implementations. Ed. Yoel Tenne and Chi-Keong Goh, Springer 2010, in press.
    • Computational Intelligence in Optimization: Applications and Implementations
    • Luukka, P.1    Lampinen, J.2
  • 8
    • 0002674294 scopus 로고    scopus 로고
    • Improving the performance of generic algorithms in classifier systems
    • Pittsburgh, PA, July 1985) Ed J.J. Grefenstette
    • Booker, L. Improving the performance of generic algorithms in classifier systems, Proc. 1st Int. Conf. on Genetic Algorithms (Pittsburgh, PA, July 1985) Ed J.J. Grefenstette, 80-92.
    • Proc. 1st Int. Conf. on Genetic Algorithms , pp. 80-92
    • Booker, L.1
  • 9
    • 0002878183 scopus 로고    scopus 로고
    • Properties of the bucket-brigade algorithm
    • Pittsburgh, PA, July 1985) Ed J.J. Grefenstette
    • Holland, J.H. Properties of the bucket-brigade algorithm, Proc. 1st Int. Conf. on Genetic Algorithms (Pittsburgh, PA, July 1985) Ed J.J. Grefenstette, 1-7.
    • Proc. 1st Int. Conf. on Genetic Algorithms , pp. 1-7
    • Holland, J.H.1
  • 10
    • 0002762299 scopus 로고
    • Genetic algorithms and classifier systems: Foundations and future directions
    • J.H. Holland Genetic algorithms and classifier systems: foundations and future directions Proc. 2nd Int. Conf. on Genetic Algorithms 1987 82 89
    • (1987) Proc. 2nd Int. Conf. on Genetic Algorithms , pp. 82-89
    • Holland, J.H.1
  • 14
    • 85027550843 scopus 로고    scopus 로고
    • Co-evolving co-operative populations of rules in learning control systems, Evolutionary Computing
    • AISB Workshop, Leeds, 1994. Selected Papers Ed T.C. Fogarty
    • Fogarty, T.C. Co-evolving co-operative populations of rules in learning control systems, Evolutionary Computing (AISB Workshop, Leeds, 1994. Selected Papers)(Lecture Notes in Computer Science 865) Ed T.C. Fogarty, 195-209.
    • Lecture Notes in Computer Science , vol.865 , pp. 195-209
    • Fogarty, T.C.1
  • 15
    • 3142672346 scopus 로고    scopus 로고
    • Evolutionary design of nearest prototype classifiers
    • F. Fernandez, and P. Isasi Evolutionary design of nearest prototype classifiers Journal of Heuristics 10 2004 431 454
    • (2004) Journal of Heuristics , vol.10 , pp. 431-454
    • Fernandez, F.1    Isasi, P.2
  • 16
    • 38149030933 scopus 로고    scopus 로고
    • An adaptive michigan approach PSO for nearest prototype classification
    • A. Cervantes, I. Galvan, and P. Isasi An adaptive michigan approach PSO for nearest prototype classification Lecture Notes in Computer Science 4528 2007 287 296
    • (2007) Lecture Notes in Computer Science , vol.4528 , pp. 287-296
    • Cervantes, A.1    Galvan, I.2    Isasi, P.3
  • 17
    • 77957890986 scopus 로고    scopus 로고
    • Particle swarm optimization for prototype reduction
    • In press
    • Nanni, L. and Lumini, A., Particle swarm optimization for prototype reduction, Neurocomputing, 2008. In press.
    • (2008) Neurocomputing
    • Nanni, L.1    Lumini, A.2
  • 22
    • 0142000477 scopus 로고    scopus 로고
    • Differential Evolution - A Simple and Efficient Heuristic for Global Optimization over Continuous Space
    • R. Storn, and K.V. Price Differential Evolution - a Simple and Efficient Heuristic for Global Optimization over Continuous Space Journal of Global Optimization 11 4 1997 341 359 Dec
    • (1997) Journal of Global Optimization , vol.11 , Issue.4 , pp. 341-359
    • Storn, R.1    Price, K.V.2
  • 23
    • 0004033139 scopus 로고    scopus 로고
    • London: McGraw-Hill, 1999. ch.6 An Introduction to Differential Evolution
    • Price, K.V. New Ideas in Optimization. London: McGraw-Hill, 1999. ch.6 An Introduction to Differential Evolution, 79-108.
    • New Ideas in Optimization , pp. 79-108
    • Price, K.V.1
  • 26
    • 0020640652 scopus 로고
    • Comparison of Multivariate Discriminant Techniques for Clinical Data - Application to the Thyroid Functional State
    • D. Coomans, M. Broeckaert, M. Jonckheer, and D.L. Massart Comparison of Multivariate Discriminant Techniques for Clinical Data - Application to the Thyroid Functional State Meth. Inform. Med. 22 1983 93 101
    • (1983) Meth. Inform. Med. , vol.22 , pp. 93-101
    • Coomans, D.1    Broeckaert, M.2    Jonckheer, M.3    Massart, D.L.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.