메뉴 건너뛰기




Volumn 11, Issue 1, 2011, Pages 1126-1134

Embedded support vector regression on Cerebellar Model Articulation Controller with Gaussian noise

Author keywords

Cerebellar Model Articulation Controller; Kernel Cerebellar Model Articulation Controller; Support vector regression

Indexed keywords

BINARY INPUTS; CEREBELLAR MODEL ARTICULATION CONTROLLER; CONSTRAINED QUADRATIC PROGRAMMING; GAUSSIAN KERNEL FUNCTIONS; GAUSSIAN NOISE; HYPER-PARAMETERS; INPUT VARIABLES; KERNEL FUNCTION; LEARNING SCHEMES; MEMORY SIZE; NOISY DATA; SIMULATION RESULT; SUPPORT VECTOR; SUPPORT VECTOR REGRESSION; SUPPORT VECTOR REGRESSIONS;

EID: 77957898227     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2010.02.012     Document Type: Article
Times cited : (4)

References (24)
  • 1
    • 0016556021 scopus 로고
    • A new approach to manipulator control: The cerebellar model articulation controller (CMAC)
    • J.S. Albus A new approach to manipulator control: the cerebellar model articulation controller (CMAC) ASME J. Dynam. Syst. Meas. Contr. 1975 220 227
    • (1975) ASME J. Dynam. Syst. Meas. Contr. , pp. 220-227
    • Albus, J.S.1
  • 2
    • 0029196135 scopus 로고
    • Neighbourhood sequential and random training techniques for CMAC
    • D.E. Thompson, and S. Kwon Neighbourhood sequential and random training techniques for CMAC IEEE Trans. Neural Network 6 1995 196 202
    • (1995) IEEE Trans. Neural Network , vol.6 , pp. 196-202
    • Thompson, D.E.1    Kwon, S.2
  • 3
    • 0031271699 scopus 로고    scopus 로고
    • Hardware implementation of CMAC neural network with reduced storage requirement
    • J.S. Ker, Y.H. Kuo, R.C. Wen Bin, and D. Liu Hardware implementation of CMAC neural network with reduced storage requirement IEEE Trans. Neural Network 8 6 1997 1545 1556
    • (1997) IEEE Trans. Neural Network , vol.8 , Issue.6 , pp. 1545-1556
    • Ker, J.S.1    Kuo, Y.H.2    Wen Bin, R.C.3    Liu, D.4
  • 4
    • 0031275971 scopus 로고    scopus 로고
    • Learning convergence of CMAC technique
    • C.S. Lin, and C.T. Chiang Learning convergence of CMAC technique IEEE Trans. Neural Networks 8 6 1997 1281 1292
    • (1997) IEEE Trans. Neural Networks , vol.8 , Issue.6 , pp. 1281-1292
    • Lin, C.S.1    Chiang, C.T.2
  • 5
    • 0026623811 scopus 로고
    • Learning convergence in the cerebellar model articulation controller
    • Y.F. Wong, and A. Sideris Learning convergence in the cerebellar model articulation controller IEEE Trans. Neural Network 3 1 1992 115 121
    • (1992) IEEE Trans. Neural Network , vol.3 , Issue.1 , pp. 115-121
    • Wong, Y.F.1    Sideris, A.2
  • 6
    • 0025507952 scopus 로고
    • CMAC: An associative neural network alternative to backpropagation
    • T.W. Miller III, F.H. Glanz, and L.G. Kraft CMAC: an associative neural network alternative to backpropagation Proc. IEEE 78 10 1990 1561 1567
    • (1990) Proc. IEEE , vol.78 , Issue.10 , pp. 1561-1567
    • Iii, W.M.T.1    Glanz, F.H.2    Kraft, L.G.3
  • 7
    • 0029766012 scopus 로고    scopus 로고
    • A new neural network structure composed of small CMACs
    • C.S. Lin, and C.K. Li A new neural network structure composed of small CMACs Proc. IEEE Conf. Neural Syst. 1996 1777 1783
    • (1996) Proc. IEEE Conf. Neural Syst. , pp. 1777-1783
    • Lin, C.S.1    Li, C.K.2
  • 8
    • 0026925086 scopus 로고
    • A comparison of five algorithm for the training of CMAC memories for learning control systems
    • S.H. Lane, and J. Militzer A comparison of five algorithm for the training of CMAC memories for learning control systems Int. Fed. Automat. Contr. 28 5 1992 1027 1035
    • (1992) Int. Fed. Automat. Contr. , vol.28 , Issue.5 , pp. 1027-1035
    • Lane, S.H.1    Militzer, J.2
  • 9
    • 0026624230 scopus 로고
    • The CMAC and a theorem of Kolmogorov
    • N.E. Cotter, and T.J. Guillerm The CMAC and a theorem of Kolmogorov Neural Networks 5 1991 221 228
    • (1991) Neural Networks , vol.5 , pp. 221-228
    • Cotter, N.E.1    Guillerm, T.J.2
  • 10
    • 0026623811 scopus 로고
    • Learning convergence in the cerebellar model articulation controller
    • Y.F. Wong, and A. Sideris Learning convergence in the cerebellar model articulation controller IEEE Trans. Neural Networks 3 1 1992 115 121
    • (1992) IEEE Trans. Neural Networks , vol.3 , Issue.1 , pp. 115-121
    • Wong, Y.F.1    Sideris, A.2
  • 11
    • 0026852133 scopus 로고
    • Theory and development of higher-order CMAC neural networks
    • S.H. Lane, D.A. Handelman, and J. Gelfand Theory and development of higher-order CMAC neural networks IEEE Control Systems 2 1992 23 30
    • (1992) IEEE Control Systems , vol.2 , pp. 23-30
    • Lane, S.H.1    Handelman, D.A.2    Gelfand, J.3
  • 12
  • 13
    • 2942691390 scopus 로고    scopus 로고
    • A genetic algorithm based robust learning credit assignment cerebellar model articulation controller
    • Z.J. Lee, Y.P. Wang, and S.F. Su A genetic algorithm based robust learning credit assignment cerebellar model articulation controller Appl. Soft Comput. 4 4 2004 357 367
    • (2004) Appl. Soft Comput. , vol.4 , Issue.4 , pp. 357-367
    • Lee, Z.J.1    Wang, Y.P.2    Su, S.F.3
  • 15
    • 33646518523 scopus 로고    scopus 로고
    • Tikhonov training of the CMAC neural network
    • L. Weruaga, and B. Kieslinger Tikhonov training of the CMAC neural network IEEE Trans. Neural Networks 17 3 2006 613 622
    • (2006) IEEE Trans. Neural Networks , vol.17 , Issue.3 , pp. 613-622
    • Weruaga, L.1    Kieslinger, B.2
  • 16
    • 0000742095 scopus 로고    scopus 로고
    • Nonlinear prediction of chaotic time series using a support vector machine
    • S. Mukherjee, E. Osuna, F. Girosi, Nonlinear prediction of chaotic time series using a support vector machine, NNSP'97, 1997, pp. 24-26.
    • (1997) NNSP'97 , pp. 24-26
    • Mukherjee, S.1    Osuna, E.2    Girosi, F.3
  • 17
    • 33750966138 scopus 로고    scopus 로고
    • Feature extraction and gating techniques for ultrasonic shaft signal classification
    • K. Lee, and V. Estivill-Castro Feature extraction and gating techniques for ultrasonic shaft signal classification Appl. Soft Comput. 7 1 2007 156 165
    • (2007) Appl. Soft Comput. , vol.7 , Issue.1 , pp. 156-165
    • Lee, K.1    Estivill-Castro, V.2
  • 18
    • 0002941010 scopus 로고    scopus 로고
    • Support vector machines for dynamic reconstruction of a chaotic system
    • D. Mattera, and S. Haykin Support vector machines for dynamic reconstruction of a chaotic system B. Schölkopf, J. Burges, A. Smola, Advances in Kernel Methods: Support Vector Machine 1999 MIT Press
    • (1999) Advances in Kernel Methods: Support Vector Machine
    • Mattera, D.1    Haykin, S.2
  • 19
    • 0346250790 scopus 로고    scopus 로고
    • Practical selection of SVM parameters and noise estimation for SVM regression
    • V. Cherkarsky, and Y. Ma Practical selection of SVM parameters and noise estimation for SVM regression Neural Networks 17 1 2004 113 126
    • (2004) Neural Networks , vol.17 , Issue.1 , pp. 113-126
    • Cherkarsky, V.1    Ma, Y.2
  • 22
    • 84958987386 scopus 로고    scopus 로고
    • Linear dependency between ε and the input noise in ε - support vector regression
    • J.T. Kwok Linear dependency between ε and the input noise in ε - support vector regression International Conference on Artificial Neural Networks 2001 405 410
    • (2001) International Conference on Artificial Neural Networks , pp. 405-410
    • Kwok, J.T.1
  • 23
    • 0041589566 scopus 로고    scopus 로고
    • Support vector interval regression networks for interval regression analysis
    • J.T. Jeng, C.C. Chuang, and S.F. Su Support vector interval regression networks for interval regression analysis Fuzzy Set Systems 138 2 2003 283 300
    • (2003) Fuzzy Set Systems , vol.138 , Issue.2 , pp. 283-300
    • Jeng, J.T.1    Chuang, C.C.2    Su, S.F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.