-
3
-
-
77957862016
-
-
Aeroflex International (accessed15.07.09)
-
Aeroflex International. www.vmc-kdc.com (accessed 15.07.09).
-
-
-
-
4
-
-
77957882904
-
Stiffness computation for rubber rings and cords
-
S.I. Dymnikov Stiffness computation for rubber rings and cords Issues on Dynamics and Strength, 24 1972 163 173 (in Russian)
-
(1972)
Issues on Dynamics and Strength, 24
, pp. 163-173
-
-
Dymnikov, S.I.1
-
5
-
-
0002123505
-
The Ateb(h)-functions and their properties
-
R.M. Rosenberg The Ateb(h)-functions and their properties Quart. Appl. Math. 21 1963 37 47
-
(1963)
Quart. Appl. Math.
, vol.21
, pp. 37-47
-
-
Rosenberg, R.M.1
-
6
-
-
34250498496
-
Inversion of the incomplete beta-function
-
P.M. Senik Inversion of the incomplete beta-function Ukrain. Math. Zh. 21 1969 325 333
-
(1969)
Ukrain. Math. Zh.
, vol.21
, pp. 325-333
-
-
Senik, P.M.1
-
7
-
-
59149097963
-
Oscillator with fraction order restoring force
-
L. Cveticanin Oscillator with fraction order restoring force J. Sound Vib. 320 2009 1064 1077
-
(2009)
J. Sound Vib.
, vol.320
, pp. 1064-1077
-
-
Cveticanin, L.1
-
11
-
-
15944389556
-
Improved LindstedtPoincar method for the solution of nonlinear problems
-
P. Amore, and A. Aranda Improved LindstedtPoincar method for the solution of nonlinear problems J. Sound Vib. 283 2005 1115 1136
-
(2005)
J. Sound Vib.
, vol.283
, pp. 1115-1136
-
-
Amore, P.1
Aranda, A.2
-
12
-
-
36048963233
-
Application of a modified He's homotopy perturbation method to obtain higher-order approximations of an x13 force nonlinear oscillator
-
A. Belendez, C. Pascual, S. Gallego, M. Ortuo, and V. Neipp Application of a modified He's homotopy perturbation method to obtain higher-order approximations of an x 1 3 force nonlinear oscillator Phys. Lett. A 371 2007 421 426
-
(2007)
Phys. Lett. A
, vol.371
, pp. 421-426
-
-
Belendez, A.1
Pascual, C.2
Gallego, S.3
Ortuo, M.4
Neipp, V.5
-
13
-
-
0036489498
-
Modified LindstedtPoincar methods for some strongly non-linear oscillations part I: Expansion of a constant
-
J.-H. He Modified LindstedtPoincar methods for some strongly non-linear oscillations part I: expansion of a constant Internat. J. Non-Linear Mech. 37 2002 309 314
-
(2002)
Internat. J. Non-Linear Mech.
, vol.37
, pp. 309-314
-
-
He, J.-H.1
-
14
-
-
33846210009
-
Determination of periodic solution for a u13 force by He's modified LindstedtPoincar method
-
T. Ozis, and T.A. Yildirm Determination of periodic solution for a u 1 3 force by He's modified LindstedtPoincar method J. Sound Vib. 301 2007 415 419
-
(2007)
J. Sound Vib.
, vol.301
, pp. 415-419
-
-
Ozis, T.1
Yildirm, T.A.2
-
18
-
-
0025887981
-
A modified LindstedtPoincar method for certain strongly non-linear oscillators
-
Y.K. Cheng, S.H. Chen, and S.L. Lau A modified LindstedtPoincar method for certain strongly non-linear oscillators Internat. J. Non-Linear Mech. 26 1991 367 378
-
(1991)
Internat. J. Non-Linear Mech.
, vol.26
, pp. 367-378
-
-
Cheng, Y.K.1
Chen, S.H.2
Lau, S.L.3
-
19
-
-
33745852188
-
Homotopy-perturbation method for pure non-linear differential equation
-
L. Cveticanin Homotopy-perturbation method for pure non-linear differential equation Chaos Solitons Fractals 30 2006 1221 1230
-
(2006)
Chaos Solitons Fractals
, vol.30
, pp. 1221-1230
-
-
Cveticanin, L.1
-
20
-
-
0022790036
-
Construction of approximate analytical solution to a new class of a non-linear oscillator equations
-
S.B. Yuste, and J.D. Bejarano Construction of approximate analytical solution to a new class of a non-linear oscillator equations J. Sound Vib. 110 1986 347 350
-
(1986)
J. Sound Vib.
, vol.110
, pp. 347-350
-
-
Yuste, S.B.1
Bejarano, J.D.2
|