메뉴 건너뛰기




Volumn 161, Issue 23, 2010, Pages 3000-3013

A method for training finite mixture models under a fuzzy clustering principle

Author keywords

Fuzzy clustering; Fuzzy statistics and data analysis; Learning

Indexed keywords

BENCHMARK DATA; FINITE MIXTURE MODELS; FUZZY C-MEANS ALGORITHMS; FUZZY MODELS; FUZZY STATISTICS AND DATA ANALYSIS; LEARNING; PROBABILISTIC PROPERTIES;

EID: 77957879865     PISSN: 01650114     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.fss.2010.03.015     Document Type: Article
Times cited : (12)

References (19)
  • 3
    • 0033556788 scopus 로고    scopus 로고
    • Mixtures of probabilistic principal component analyzers
    • M. Tipping, and C. Bishop Mixtures of probabilistic principal component analyzers Neural Computation 11 2 1999 443 482
    • (1999) Neural Computation , vol.11 , Issue.2 , pp. 443-482
    • Tipping, M.1    Bishop, C.2
  • 7
    • 26844514824 scopus 로고    scopus 로고
    • Regularized linear fuzzy clustering and probabilistic PCA mixture models
    • DOI 10.1109/TFUZZ.2004.840104
    • K. Honda, and H. Ichihashi Regularized linear fuzzy clustering and probabilistic PCA mixture models IEEE Transactions on Fuzzy Systems 13 4 2005 508 516 (Pubitemid 41461445)
    • (2005) IEEE Transactions on Fuzzy Systems , vol.13 , Issue.4 , pp. 508-516
    • Honda, K.1    Ichihashi, H.2
  • 8
    • 0031640969 scopus 로고    scopus 로고
    • Fuzzy clustering by quadratic regularization
    • Anchorage, Alaska
    • S. Miyamoto, K. Umayahara, Fuzzy clustering by quadratic regularization, in: Proc. of FUZZ-IEEE'98, Anchorage, Alaska, 1998.
    • (1998) Proc. of FUZZ-IEEE'98
    • Miyamoto, S.1    Umayahara, K.2
  • 10
    • 21444459088 scopus 로고    scopus 로고
    • From a Gaussian mixture model to additive fuzzy systems
    • DOI 10.1109/TFUZZ.2004.841728
    • M.-T. Gan, M. Hanmandlu, and A.H. Tan From a Gaussian mixture model to additive fuzzy systems IEEE Transactions on Fuzzy Systems 13 3 2005 303 316 (Pubitemid 40914088)
    • (2005) IEEE Transactions on Fuzzy Systems , vol.13 , Issue.3 , pp. 303-316
    • Gan, M.-T.1    Hanmandlu, M.2    Tan, A.H.3
  • 11
    • 38049135335 scopus 로고
    • Another interpretation of the em algorithm for mixture distributions
    • R.J. Hathaway Another interpretation of the EM algorithm for mixture distributions Statistics & Probability Letters 4 1986 53 56
    • (1986) Statistics & Probability Letters , vol.4 , pp. 53-56
    • Hathaway, R.J.1
  • 12
    • 0000612344 scopus 로고    scopus 로고
    • Gaussian mixture pdf approximation and fuzzy c-means clustering with entropy regularization
    • H. Ichihashi, K. Honda, N. Tani, Gaussian mixture pdf approximation and fuzzy c-means clustering with entropy regularization, in: Proc. Fourth Asian Fuzzy System Symp., 2000, pp. 217-221.
    • (2000) Proc. Fourth Asian Fuzzy System Symp. , pp. 217-221
    • Ichihashi, H.1    Honda, K.2    Tani, N.3
  • 13
    • 0003744820 scopus 로고    scopus 로고
    • The em algorithm for mixtures of factor analyzers
    • Department of Computer Science, University of Toronto, Toronto, Canada
    • Z. Ghahramani, G. Hinton, The EM algorithm for mixtures of factor analyzers, Technical Report CRGTR-96-1, Department of Computer Science, University of Toronto, Toronto, Canada, 1997.
    • (1997) Technical Report CRGTR-96-1
    • Ghahramani, Z.1    Hinton, G.2
  • 14
    • 0014534297 scopus 로고
    • A new approach to clustering
    • E. Ruspini A new approach to clustering Information and Control 15 1969 22 32
    • (1969) Information and Control , vol.15 , pp. 22-32
    • Ruspini, E.1
  • 15
    • 34247855883 scopus 로고    scopus 로고
    • Extension of the mixture of factor analyzers model to incorporate the multivariate t-distribution
    • DOI 10.1016/j.csda.2006.09.015, PII S0167947306003410
    • G. McLachlan, R. Bean, and L.B.-T. Jones Extension of the mixture of factor analyzers model to incorporate the multivariate t-distribution Computational Statistics & Data Analysis 51 11 2007 5327 5338 (Pubitemid 46694022)
    • (2007) Computational Statistics and Data Analysis , vol.51 , Issue.11 , pp. 5327-5338
    • McLachlan, G.J.1    Bean, R.W.2    Ben-Tovim Jones, L.3
  • 16
    • 0002864973 scopus 로고
    • ML estimation of the t distribution using em and its extensions ECM and ECME
    • C. Liu, and D. Rubin ML estimation of the t distribution using EM and its extensions ECM and ECME Statistica Sinica 5 1 1995 19 39
    • (1995) Statistica Sinica , vol.5 , Issue.1 , pp. 19-39
    • Liu, C.1    Rubin, D.2
  • 18
    • 0032029288 scopus 로고    scopus 로고
    • Deterministic annealing EM algorithm
    • DOI 10.1016/S0893-6080(97)00133-0, PII S0893608097001330
    • N. Ueda, and R. Nakano Deterministic annealing em algorithm Neural Networks 11 2 1998 271 282 (Pubitemid 28231473)
    • (1998) Neural Networks , vol.11 , Issue.2 , pp. 271-282
    • Ueda, N.1    Nakano, R.2
  • 19
    • 1942484430 scopus 로고    scopus 로고
    • Semi-supervised learning using gaussian fields and harmonic functions
    • X. Zhu, Z. Ghahramani, J. Lafferty, Semi-supervised learning using gaussian fields and harmonic functions, in: Proc. of the ICML, 2003.
    • (2003) Proc. of the ICML
    • Zhu, X.1    Ghahramani, Z.2    Lafferty, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.