메뉴 건너뛰기




Volumn 16, Issue 6, 2010, Pages 1601-1620

Mobile ad hoc network proactive routing with delay prediction using neural network

Author keywords

Delay prediction; MANET proactive routing; MLP network; Neural network; OLSR NN; RBF network; TierUp

Indexed keywords

DELAY PREDICTION; MLP NETWORK; OLSR-NN; PROACTIVE ROUTING; RBF NETWORK; TIERUP;

EID: 77957866217     PISSN: 10220038     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11276-009-0217-7     Document Type: Article
Times cited : (19)

References (51)
  • 1
    • 12044249591 scopus 로고
    • The analysis of observed chaotic data in physical systems
    • DOI 10.1103/RevModPhys.65.1331
    • HDI Abarbanel R Brown JJ Sidorowich LS Tsimring 1993 The analysis of observed chaotic data in physical systems Reviews of Modern Physics 65 4 1331 1392 10.1103/RevModPhys.65.1331 1249699 (Pubitemid 24752341)
    • (1993) Reviews of Modern Physics , vol.65 , Issue.4 , pp. 1331
    • Abarbanel, H.D.I.1    Brown, R.2    Sidorowich, J.J.3    Tsimring, L.S.4
  • 2
    • 7744227596 scopus 로고    scopus 로고
    • A review of routing protocols for mobile ad hoc networks
    • 10.1016/S1570-8705(03)00043-X
    • M Abolhasan T Wysocki E Dutkiewicz 2004 A review of routing protocols for mobile ad hoc networks Ad Hoc Networks 2 1 1 22 10.1016/S1570-8705(03)00043-X
    • (2004) Ad Hoc Networks , vol.2 , Issue.1 , pp. 1-22
    • Abolhasan, M.1    Wysocki, T.2    Dutkiewicz, E.3
  • 3
    • 13944283393 scopus 로고    scopus 로고
    • A survey on routing protocols for wireless sensor networks
    • DOI 10.1016/j.adhoc.2003.09.010, PII S1570870503000738
    • K Akkaya M Younis 2005 A survey on routing protocols for wireless sensor networks Ad Hoc Networks 3 3 325 349 10.1016/j.adhoc.2003.09.010 (Pubitemid 40266054)
    • (2005) Ad Hoc Networks , vol.3 , Issue.3 , pp. 325-349
    • Akkaya, K.1    Younis, M.2
  • 5
    • 26844560517 scopus 로고    scopus 로고
    • QOLSR, QoS routing for ad hoc wireless networks using OLSR
    • DOI 10.1002/ett.1067, Self-Organisation in Mobile Networking
    • H Badis KA Agha 2005 QOLSR, QoS routing for ad hoc wireless networks using OLSR European Transactions on Telecommunications 15 4 427 442 10.1002/ett.1067 (Pubitemid 41451654)
    • (2005) European Transactions on Telecommunications , vol.16 , Issue.5 , pp. 427-442
    • Badis, H.1    Agha, K.A.2
  • 6
    • 0003582520 scopus 로고
    • Co-integration, error correction, and the econometric analysis of non-stationary data
    • Chap 1.5. New York: Oxford University Press
    • Banerjee, A., Dolado, J. J., Galbraith, W. J., Hendry, F. D. (1993) Co-integration, error correction, and the econometric analysis of non-stationary data. Advanced Texts in Econometrics, Chap 1.5. New York: Oxford University Press.
    • (1993) Advanced Texts in Econometrics
    • Banerjee, A.1    Dolado, J.J.2    Galbraith, W.J.3    Hendry, F.D.4
  • 8
    • 25644450392 scopus 로고    scopus 로고
    • Perfect simulation and stationarity of a class of mobility models
    • Miami, FL
    • Boudec, J.Y. L., Vojnovic, M. (2005). Perfect simulation and stationarity of a class of mobility models. In Proceedings of IEEE INFOCOM 2005, Miami, FL.
    • (2005) Proceedings of IEEE INFOCOM 2005
    • Boudec, J.Y.L.1    Vojnovic, M.2
  • 13
    • 77957870830 scopus 로고    scopus 로고
    • Improving link-state routing-by using estimated future link delays (revised)
    • (Dec). University of Maryland
    • Eom, H. (Dec 2002). Improving link-state routing-by using estimated future link delays (revised), Technique Report CS-TR-4297R, Computer Science Department, University of Maryland.
    • (2002) Technique Report CS-TR-4297R, Computer Science Department
    • Eom, H.1
  • 14
    • 0001373628 scopus 로고
    • Random neural networks with negative and positive signals and product form solution
    • 10.1162/neco.1989.1.4.502
    • E Gelenbe 1989 Random neural networks with negative and positive signals and product form solution Neural Computation 1 4 502 510 10.1162/neco.1989.1.4. 502
    • (1989) Neural Computation , vol.1 , Issue.4 , pp. 502-510
    • Gelenbe, E.1
  • 15
    • 0000428263 scopus 로고
    • Learning in the recurrent random neural network
    • 10.1162/neco.1993.5.1.154 583894
    • E Gelenbe 1993 Learning in the recurrent random neural network Neural Computation 5 1 154 164 10.1162/neco.1993.5.1.154 583894
    • (1993) Neural Computation , vol.5 , Issue.1 , pp. 154-164
    • Gelenbe, E.1
  • 16
    • 0036859210 scopus 로고    scopus 로고
    • Learning in the multiple class random neural network
    • DOI 10.1109/TNN.2002.804228
    • E Gelenbe KF Hussain 2002 Learning in the multiple class random neural network IEEE Transactions on Neural Networks 13 6 1257 1267 10.1109/TNN.2002. 804228 (Pubitemid 35428517)
    • (2002) IEEE Transactions on Neural Networks , vol.13 , Issue.6 , pp. 1257-1267
    • Gelenbe, E.1    Hussain, K.F.2
  • 17
    • 0032762126 scopus 로고    scopus 로고
    • Function Approximation with Spiked Random Networks
    • 10.1109/72.737488
    • E Gelenbe ZH Mao YD Li 1999 Function Approximation with Spiked Random Networks IEEE Transactions on Neural Networks 10 1 3 9 10.1109/72.737488
    • (1999) IEEE Transactions on Neural Networks , vol.10 , Issue.1 , pp. 3-9
    • Gelenbe, E.1    Mao, Z.H.2    Li, Y.D.3
  • 18
    • 0000997490 scopus 로고    scopus 로고
    • Simulation with learning agents
    • 10.1109/5.910851 Feb 2007
    • E Gelenbe E Seref ZG Xu 2001 Simulation with learning agents Proceedings of the IEEE 889 2 148 157 10.1109/5.910851 Feb 2007
    • (2001) Proceedings of the IEEE , vol.889 , Issue.2 , pp. 148-157
    • Gelenbe, E.1    Seref, E.2    Xu, Z.G.3
  • 19
    • 0035480143 scopus 로고    scopus 로고
    • Design and performance of cognitive packet networks
    • DOI 10.1016/S0166-5316(01)00042-6, PII S0166531601000426
    • E Gelenbe R Lent Z Xu 2001 Design and performance of cognitive packet networks An International Journal on Performance Evaluation 46 2-3 155 176 1013.68010 10.1016/S0166-5316(01)00042-6 (Pubitemid 32768295)
    • (2001) Performance Evaluation , vol.46 , Issue.2-3 , pp. 155-176
    • Gelenbe, E.1    Lent, R.2    Xu, Z.3
  • 20
    • 7744225360 scopus 로고    scopus 로고
    • Power-aware ad hoc cognitive packet networks
    • 10.1016/j.adhoc.2004.03.009
    • E Gelenbe R Lent 2004 Power-aware ad hoc cognitive packet networks Ad Hoc Networks 2 3 205 216 10.1016/j.adhoc.2004.03.009
    • (2004) Ad Hoc Networks , vol.2 , Issue.3 , pp. 205-216
    • Gelenbe, E.1    Lent, R.2
  • 21
    • 0001239387 scopus 로고    scopus 로고
    • A neural network controller for congestion control in ATM multiplexers
    • 10.1016/S0169-7552(96)00099-2
    • IW Habib AA Tarraf TN Saadawi 1997 A neural network controller for congestion control in ATM multiplexers Computer Networks and ISDN Systems 29 3 325 334 10.1016/S0169-7552(96)00099-2
    • (1997) Computer Networks and ISDN Systems , vol.29 , Issue.3 , pp. 325-334
    • Habib, I.W.1    Tarraf, A.A.2    Saadawi, T.N.3
  • 23
    • 0003026627 scopus 로고
    • Distinctive features of learning in the higher animal
    • J.F. Delafresnaye (eds). London Oxford University Press
    • Hebb, D. O. (1961). Distinctive features of learning in the higher animal. In J. F. Delafresnaye (Ed.), Brain mechanisms and learning. Oxford University Press: London.
    • (1961) Brain Mechanisms and Learning
    • Hebb, D.O.1
  • 24
    • 0000810560 scopus 로고    scopus 로고
    • Practical implementation of nonlinear time series methods: The TISEAN package
    • 0990.37522 10.1063/1.166424 1222984
    • R Hegger H Kantz T Schreiber 1999 Practical implementation of nonlinear time series methods: The TISEAN package CHAOS 9 2 413 435 0990.37522 10.1063/1.166424 1222984
    • (1999) CHAOS , vol.9 , Issue.2 , pp. 413-435
    • Hegger, R.1    Kantz, H.2    Schreiber, T.3
  • 26
    • 0020118274 scopus 로고
    • Neural networks and physical systems with emergent collective computational abilities
    • 10.1073/pnas.79.8.2554 652033
    • JJ Hopfield 1982 Neural networks and physical systems with emergent collective computational abilities Proceedings of the national academy of sciences of the USA. 79 8 2554 2558 10.1073/pnas.79.8.2554 652033
    • (1982) Proceedings of the National Academy of Sciences of the USA. , vol.79 , Issue.8 , pp. 2554-2558
    • Hopfield, J.J.1
  • 27
    • 77957883413 scopus 로고    scopus 로고
    • http://tools.ietf.org/wg/manet/.
  • 29
    • 0003597247 scopus 로고    scopus 로고
    • Internet-draft: The dynamic source Routing (DSR) Protocol for mobile ad hoc networks
    • July
    • Johnson, D. B., Maltz, D. A., & Hu, Y. C. (July 2004). Internet-draft: The dynamic source Routing (DSR) Protocol for mobile ad hoc networks, Network Working Group, Internet-draft.
    • (2004) Network Working Group, Internet-draft
    • Johnson, D.B.1    Maltz, D.A.2    Hu, Y.C.3
  • 30
    • 0001562120 scopus 로고    scopus 로고
    • Statistical test for dynamical nonstationarity in observed time-series data
    • 10.1103/PhysRevE.56.316
    • MB Kennel 1997 Statistical test for dynamical nonstationarity in observed time-series data Physical Review E 56 1 316 321 10.1103/PhysRevE.56.316
    • (1997) Physical Review e , vol.56 , Issue.1 , pp. 316-321
    • Kennel, M.B.1
  • 31
    • 35949006791 scopus 로고
    • Determining embedding dimension for phase-space reconstruction using a geometrical construction
    • 10.1103/PhysRevA.45.3403
    • MB Kennel R Brown HDI Abarbanel 1992 Determining embedding dimension for phase-space reconstruction using a geometrical construction Physical Review 45 6 3403 3411 10.1103/PhysRevA.45.3403
    • (1992) Physical Review , vol.45 , Issue.6 , pp. 3403-3411
    • Kennel, M.B.1    Brown, R.2    Abarbanel, H.D.I.3
  • 33
    • 0034291975 scopus 로고    scopus 로고
    • Clustering and selection of multiple criteria alternatives using unsupervised and supervised neural networks
    • DOI 10.1023/A:1008934512672
    • B Malakooti V Raman 2000 Clustering and selection of multiple criteria alternatives using unsupervised and supervised neural networks Journal of Intelligent Manufacturing 11 435 451 10.1023/A:1008934512672 (Pubitemid 32067228)
    • (2000) Journal of Intelligent Manufacturing , vol.11 , Issue.5 , pp. 435-451
    • Malakooti, B.1    Raman, V.2
  • 34
    • 0033878853 scopus 로고    scopus 로고
    • Interactive multi-objective artificial neural network approach for machine setup optimization
    • DOI 10.1023/A:1008999907768
    • B Malakooti V Raman 2000 An interactive artificial neural network approach for machine set-up optimization Journal of Intelligent Manufacturing 11 1 41 51 10.1023/A:1008999907768 (Pubitemid 30583083)
    • (2000) Journal of Intelligent Manufacturing , vol.11 , Issue.1 , pp. 41-50
    • Malakooti, B.1    Raman, V.2
  • 35
    • 0028548294 scopus 로고
    • An Adaptive Feedforward Artificial Neural Network with Application to Multiple Criteria Decision Making
    • 0823.90072 10.1287/mnsc.40.11.1542
    • B Malakooti Y Zhou 1994 An Adaptive Feedforward Artificial Neural Network with Application to Multiple Criteria Decision Making Management Science 40 11 1542 1561 0823.90072 10.1287/mnsc.40.11.1542
    • (1994) Management Science , vol.40 , Issue.11 , pp. 1542-1561
    • Malakooti, B.1    Zhou, Y.2
  • 36
    • 0001934378 scopus 로고    scopus 로고
    • Approximating polynomial functions by Feedforward artificial neural networks: Capacity, analysis, and design
    • 0901.68173 10.1016/S0096-3003(96)00338-4 1485603
    • B Malakooti Y Zhou 1998 Approximating polynomial functions by Feedforward artificial neural networks: Capacity, analysis, and design Applied Mathematics and Computation 90 27 52 0901.68173 10.1016/S0096-3003(96)00338-4 1485603
    • (1998) Applied Mathematics and Computation , vol.90 , pp. 27-52
    • Malakooti, B.1    Zhou, Y.2
  • 38
    • 0028464532 scopus 로고
    • Neural Network Control of Communications Systems
    • 10.1109/72.298233
    • RJT Morris B Samadi 1994 Neural Network Control of Communications Systems IEEE Transactions on Neural Networks 5 4 639 650 10.1109/72.298233
    • (1994) IEEE Transactions on Neural Networks , vol.5 , Issue.4 , pp. 639-650
    • Morris, R.J.T.1    Samadi, B.2
  • 42
    • 0001764090 scopus 로고
    • Finding the embedding dimension and variable dependencies in time series
    • 10.1162/neco.1994.6.3.509
    • H Pi C Peterson 1994 Finding the embedding dimension and variable dependencies in time series Neural Computation 6 3 509 520 10.1162/neco.1994.6. 3.509
    • (1994) Neural Computation , vol.6 , Issue.3 , pp. 509-520
    • Pi, H.1    Peterson, C.2
  • 45
    • 0000828959 scopus 로고    scopus 로고
    • Detecting and analyzing nonstationarity in a time series using nonlinear cross predictions
    • 10.1103/PhysRevLett.78.843
    • T Schreiber 1997 Detecting and analyzing nonstationarity in a time series using nonlinear cross predictions Physical Review Letters 78 5 843 846 10.1103/PhysRevLett.78.843
    • (1997) Physical Review Letters , vol.78 , Issue.5 , pp. 843-846
    • Schreiber, T.1
  • 48
    • 0034806831 scopus 로고    scopus 로고
    • Bi-directional computing architecture for time series prediction
    • DOI 10.1016/S0893-6080(01)00087-9, PII S0893608001000879
    • H Wakuya JM Zurada 2001 Bi-directional computing architecture for time series prediction Neural Networks 14 9 1307 1321 10.1016/S0893-6080(01)00087-9 (Pubitemid 32910639)
    • (2001) Neural Networks , vol.14 , Issue.9 , pp. 1307-1321
    • Wakuya, H.1    Zurada, J.M.2
  • 50
    • 77957869971 scopus 로고    scopus 로고
    • Wolfram Research, Mathematica Neural Networks 1.0.2. Available: http://www.wolfram.com/products/applications/neuralnetworks/.
    • Mathematica Neural Networks 1.0.2
  • 51
    • 77957875341 scopus 로고    scopus 로고
    • Wolfram Research, MathLink. Available: http://www.wolfram.com/solutions/ mathlink/mathlink.html.
    • MathLink


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.