메뉴 건너뛰기




Volumn 37, Issue 12, 2010, Pages 8471-8478

Automatically computed document dependent weighting factor facility for Naïve Bayes classification

Author keywords

ACDD weighting factor facility; Na ve bayes; Text document classification

Indexed keywords

CLASSIFICATION (OF INFORMATION); ECONOMIC AND SOCIAL EFFECTS; TEXT PROCESSING;

EID: 77957854582     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2010.05.030     Document Type: Article
Times cited : (22)

References (27)
  • 1
    • 18844383409 scopus 로고    scopus 로고
    • Clustering documents into web directory for bootstrapping a supervised classification
    • Adami, G., Avesani, P., & Sona, D. (2005). Clustering documents into web directory for bootstrapping a supervised classification. Data and Knowledge Engineering, 54(3), 301-325.
    • (2005) Data and Knowledge Engineering , vol.54 , Issue.3 , pp. 301-325
    • Adami, G.1    Avesani, P.2    Sona, D.3
  • 2
    • 33746905527 scopus 로고    scopus 로고
    • A new text categorization technique using distributional clustering and learning logic
    • Al-Mubaid, H., & Umair, S. A. (2006). A new text categorization technique using distributional clustering and learning logic. IEEE Transactions on Knowledge and Data Engineering, 18(9), 1156-1165.
    • (2006) IEEE Transactions on Knowledge and Data Engineering , vol.18 , Issue.9 , pp. 1156-1165
    • Al-Mubaid, H.1    Umair, S.A.2
  • 5
    • 50649108674 scopus 로고    scopus 로고
    • Document classification methods for organizing explicit knowledge
    • Institute of Information Systems, University of Bern, Engehaldenstrasse 8, CH - 3012 Bern, Switzerland. (University Technical Report)
    • Brücher, H., Knolmayer, G., & Mittermayer, M.A. (2002). Document classification methods for organizing explicit knowledge. Research Group Information Engineering, Institute of Information Systems, University of Bern, Engehaldenstrasse 8, CH - 3012 Bern, Switzerland. (University Technical Report).
    • (2002) Research Group Information Engineering
    • Brücher, H.1    Knolmayer, G.2    Mittermayer, M.A.3
  • 8
    • 0031269184 scopus 로고    scopus 로고
    • On the optimality of the simple bayesian classifier under zero-one loss
    • Domingos, P., & Pazzani, M. (1997). On the optimality of the simple bayesian classifier under zero-one loss. Machine Learning, 29(2-3), 103-130.
    • (1997) Machine Learning , vol.29 , Issue.2-3 , pp. 103-130
    • Domingos, P.1    Pazzani, M.2
  • 10
    • 77954827670 scopus 로고    scopus 로고
    • Department of Computing Science, University of Alberta, Edmonton, AB T6G 2H1, Canada, 2001. URL: [2007- 4-14]
    • Greiner, R., & Schaffer, J. (2001). AIxploratorium - decision trees. Department of Computing Science, University of Alberta, Edmonton, AB T6G 2H1, Canada, 2001. URL: http://www.cs.ualberta.ca/aixplore/learning/DecisionTrees [2007- 4-14].
    • (2001) AIxploratorium - Decision Trees
    • Greiner, R.1    Schaffer, J.2
  • 11
    • 26944451467 scopus 로고    scopus 로고
    • Department of Computer Science and Engineering. Army HPC Research Centre, University of Minnesota, Minneapolis, USA. (University Technical Report
    • Han, E.H., Karypis, G., & Kumar, V. (1999). Text categorization using weighted ddjusted k-nearest neighbor classification. Department of Computer Science and Engineering. Army HPC Research Centre, University of Minnesota, Minneapolis, USA. (University Technical Report).
    • (1999) Text Categorization Using Weighted Ddjusted K-nearest Neighbor Classification
    • Han, E.H.1    Karypis, G.2    Kumar, V.3
  • 13
  • 14
    • 77954821554 scopus 로고    scopus 로고
    • Text document preprocessing with the Bayes formula for classification based on the vector space model. Computer and Information Science
    • Isa, D., Lee, L. H., Kallimani, V. P., & Rajkumar, R. (2008c). Text document preprocessing with the Bayes formula for classification based on the vector space model. Computer and Information Science, Canadian Center of Science and Education (CCSE), 1(4), 79-90.
    • (2008) Canadian Center of Science and Education (CCSE) , vol.1 , Issue.4 , pp. 79-90
    • Isa, D.1    Lee, L.H.2    Kallimani, V.P.3    Rajkumar, R.4
  • 15
    • 60849139388 scopus 로고    scopus 로고
    • Using the self-organizing map for clustering of text documents
    • Isa, D., Kallimani, V. P., & Lee, L. H. (2009). Using the self-organizing map for clustering of text documents. Expert Systems With Applications (ESWA), 36(5), 9584-9591.
    • (2009) Expert Systems With Applications (ESWA) , vol.36 , Issue.5 , pp. 9584-9591
    • Isa, D.1    Kallimani, V.P.2    Lee, L.H.3
  • 19
    • 0003798639 scopus 로고    scopus 로고
    • Technical Report No., Department of Statistics, University of Wiscousin, Madison. (University Technical Report
    • Lin, Y. (1999). Support vector machines and the Bayes rule in classification. Technical Report No. 1014, Department of Statistics, University of Wiscousin, Madison. (University Technical Report).
    • (1999) Support Vector Machines and the Bayes Rule in Classification , vol.1014
    • Lin, Y.1
  • 20
    • 50649113117 scopus 로고    scopus 로고
    • A comparison of event models for naÏve Bayes text classification
    • McCallum, A., & Nigam, K. (2003). A comparison of event models for naÏve Bayes text classification. Journal of Machine Learning Research(3), 1265-1287.
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1265-1287
    • McCallum, A.1    Nigam, K.2
  • 22


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.