-
3
-
-
0024430786
-
-
R.D. Larsen, E.G. Corley, P. Davis, P.J. Reider, and E.J.J. Grabowski J. Am. Chem. Soc. 111 1989 7650
-
(1989)
J. Am. Chem. Soc.
, vol.111
, pp. 7650
-
-
Larsen, R.D.1
Corley, E.G.2
Davis, P.3
Reider, P.J.4
Grabowski, E.J.J.5
-
6
-
-
0001535307
-
-
O. Piccolo, U. Azzena, G. Melloni, G. Delogu, and E. Valoti J. Org. Chem. 56 1991 183
-
(1991)
J. Org. Chem.
, vol.56
, pp. 183
-
-
Piccolo, O.1
Azzena, U.2
Melloni, G.3
Delogu, G.4
Valoti, E.5
-
7
-
-
33845282869
-
-
T. Ohta, H. Takaya, M. Kitamura, K. Nagai, and R. Noyori J. Org. Chem. 52 1987 3174
-
(1987)
J. Org. Chem.
, vol.52
, pp. 3174
-
-
Ohta, T.1
Takaya, H.2
Kitamura, M.3
Nagai, K.4
Noyori, R.5
-
8
-
-
11844273232
-
-
G.S. Coumbarides, J. Eames, A. Flinn, J. Northen, and Y. Yohannes Tetrahedron Lett. 46 2005 849
-
(2005)
Tetrahedron Lett.
, vol.46
, pp. 849
-
-
Coumbarides, G.S.1
Eames, J.2
Flinn, A.3
Northen, J.4
Yohannes, Y.5
-
9
-
-
30544437360
-
-
G.S. Coumbarides, M. Dingjan, J. Eames, A. Flinn, M. Motevalli, J. Northen, and Y. Yohannes Synlett 2006 101
-
(2006)
Synlett
, pp. 101
-
-
Coumbarides, G.S.1
Dingjan, M.2
Eames, J.3
Flinn, A.4
Motevalli, M.5
Northen, J.6
Yohannes, Y.7
-
10
-
-
33846806105
-
-
E. Boyd, S. Chavda, E. Coulbeck, G.S. Coumbarides, M. Dingjan, J. Eames, A. Flinn, A.K. Krishnamurthy, M. Namutebi, J. Northen, and Y. Yohannes Tetrahedron: Asymmetry 17 2006 3406
-
(2006)
Tetrahedron: Asymmetry
, vol.17
, pp. 3406
-
-
Boyd, E.1
Chavda, S.2
Coulbeck, E.3
Coumbarides, G.S.4
Dingjan, M.5
Eames, J.6
Flinn, A.7
Krishnamurthy, A.K.8
Namutebi, M.9
Northen, J.10
Yohannes, Y.11
-
11
-
-
33846664160
-
-
E. Coulbeck, G.S. Coumbarides, M. Dingjan, J. Eames, S. Ghilagaber, and Y. Yohannes Tetrahedron: Asymmetry 17 2006 3386
-
(2006)
Tetrahedron: Asymmetry
, vol.17
, pp. 3386
-
-
Coulbeck, E.1
Coumbarides, G.S.2
Dingjan, M.3
Eames, J.4
Ghilagaber, S.5
Yohannes, Y.6
-
14
-
-
34247492713
-
-
G.S. Coumbarides, M. Dingjan, J. Eames, A. Flinn, and J. Northen Chirality 19 2007 321
-
(2007)
Chirality
, vol.19
, pp. 321
-
-
Coumbarides, G.S.1
Dingjan, M.2
Eames, J.3
Flinn, A.4
Northen, J.5
-
16
-
-
15944408858
-
-
G.S. Coumbarides, M. Dingjan, J. Eames, A. Flinn, J. Northen, and Y. Yohannes Tetrahedron Lett. 46 2005 2897
-
(2005)
Tetrahedron Lett.
, vol.46
, pp. 2897
-
-
Coumbarides, G.S.1
Dingjan, M.2
Eames, J.3
Flinn, A.4
Northen, J.5
Yohannes, Y.6
-
17
-
-
77957766321
-
-
Ph.D. Thesis, University of London
-
Yohannes, Y. Ph.D. Thesis, University of London, 2004.
-
(2004)
-
-
Yohannes, Y.1
-
19
-
-
77957780296
-
-
note
-
1H NMR (400 MHz) spectroscopy]. For oxazolidin-2-one (S,S)-anti-3, the PhCHN double doublet is at 5.32 ppm (1H, dd, J = 8.8 and 3.2). Whereas, for oxazolidin-2-one (R,S)-syn-3, the PhCHN double doublet is 5.45 ppm (1H, dd, J = 9.0 and 5.1).
-
-
-
-
20
-
-
65349134727
-
-
The enantiomeric excess was determined through hydrolysis of the active ester to give the corresponding carboxylic acid. The enantiomeric excess of this carboxylic acid was determined through statistical anhydride formation by treatment with DCC. For further information, see: E. Coulbeck, and J. Eames Tetrahedron: Asymmetry 20 2009 635
-
(2009)
Tetrahedron: Asymmetry
, vol.20
, pp. 635
-
-
Coulbeck, E.1
Eames, J.2
-
21
-
-
77957759767
-
-
After 1 min - the active ester (S)-2 was recovered in 30% yield with 90% ee. The enantiomeric excess was confirmed by specific rotation and self-coupling; see Ref. 6
-
After 1 min - the active ester (S)-2 was recovered in 30% yield with 90% ee. The enantiomeric excess was confirmed by specific rotation and self-coupling; see Ref. 6.
-
-
-
-
22
-
-
77957798933
-
-
For 1 equiv - the active ester (S)-2 was recovered in 35% yield with 44% ee. The enantiomeric excess was confirmed by specific rotation and self-coupling; see Ref. 6
-
For 1 equiv - the active ester (S)-2 was recovered in 35% yield with 44% ee. The enantiomeric excess was confirmed by specific rotation and self-coupling; see Ref. 6.
-
-
-
-
23
-
-
77957760812
-
-
The following enantiomerically enriched active esters were isolated; Scheme 4, entry 1 - (S)-2; 35%; 46% ee; entry 2 - (S)-4; 43%; 80% ee; entry 3 - (rac)-6; 90%; entry 4 - (S)-8; 42%; 55% ee; entry 5 - (S)-10; 42%; 74% ee; entry 6 - (S)-12; 20%; 65% ee; entry 7 - (S)-14; 37%; 63% ee
-
The following enantiomerically enriched active esters were isolated; Scheme 4, entry 1 - (S)-2; 35%; 46% ee; entry 2 - (S)-4; 43%; 80% ee; entry 3 - (rac)-6; 90%; entry 4 - (S)-8; 42%; 55% ee; entry 5 - (S)-10; 42%; 74% ee; entry 6 - (S)-12; 20%; 65% ee; entry 7 - (S)-14; 37%; 63% ee.
-
-
-
-
24
-
-
77957806622
-
-
The% ee of the recovered active esters were comparable (within experimental error) to the theoretical value based on the %yield (±10%) and %de of the oxazolidin-2-one adduct
-
The% ee of the recovered active esters were comparable (within experimental error) to the theoretical value based on the %yield (±10%) and %de of the oxazolidin-2-one adduct.
-
-
-
-
25
-
-
77957769793
-
-
Addition of the lithiated oxazolidin-2-one (S)-1 to the active ester (rac)-12 is stereospecific as addition to the enantiomerically pure active ester (R)-12 gave exclusively the major diastereoisomeric oxazolidin-2-one (R,S)-syn-13 in 54% yield with >98% de
-
Addition of the lithiated oxazolidin-2-one (S)-1 to the active ester (rac)-12 is stereospecific as addition to the enantiomerically pure active ester (R)-12 gave exclusively the major diastereoisomeric oxazolidin-2-one (R,S)-syn-13 in 54% yield with >98% de.
-
-
-
-
26
-
-
77957764234
-
-
The enantiomerically enriched active ester 2 was isolated; Scheme 5, entry 1 - 35%; (S)-54% ee; entry 2 - 14%; (S)-23% ee; entry 3 - 59%; (S)-17% ee; entry 4 - 32%; (S)-53% ee; entry 5 - 24%; (R)-56% ee; entry 6 - 15%; (R)-54% ee; entry 7 - 37%; (R)-66% ee; entry 8 - 17%; (R)-64% ee
-
The enantiomerically enriched active ester 2 was isolated; Scheme 5, entry 1 - 35%; (S)-54% ee; entry 2 - 14%; (S)-23% ee; entry 3 - 59%; (S)-17% ee; entry 4 - 32%; (S)-53% ee; entry 5 - 24%; (R)-56% ee; entry 6 - 15%; (R)-54% ee; entry 7 - 37%; (R)-66% ee; entry 8 - 17%; (R)-64% ee.
-
-
-
-
27
-
-
77957771889
-
-
The enantiomerically enriched active ester 2 was isolated; Scheme 6, entry 1 - 25%; (R)-32% ee; entry 2 - 17%; (R)-68% ee; entry 3 - 32%; (R)-37% ee; entry 4 - 15%; (R)-19% ee; entry 5 - 14%; (S)-44% ee; 4%; (S)-4% ee; entry 8 - 31%; (R)-36% ee; entry 9 - 37%; (S)-36% ee; entry 10 - 9%; (S)-16% ee; entry 12 - 19%; (R)-33% ee; entry 14 - 50%; 6% ee
-
The enantiomerically enriched active ester 2 was isolated; Scheme 6, entry 1 - 25%; (R)-32% ee; entry 2 - 17%; (R)-68% ee; entry 3 - 32%; (R)-37% ee; entry 4 - 15%; (R)-19% ee; entry 5 - 14%; (S)-44% ee; 4%; (S)-4% ee; entry 8 - 31%; (R)-36% ee; entry 9 - 37%; (S)-36% ee; entry 10 - 9%; (S)-16% ee; entry 12 - 19%; (R)-33% ee; entry 14 - 50%; 6% ee.
-
-
-
-
28
-
-
77957764582
-
-
The stereochemistry of the Seebach adducts, (R,S)-syn-17, (S,S)-anti-29 and (S,S)-anti-33, were confirmed by stereospecific synthesis
-
The stereochemistry of the Seebach adducts, (R,S)-syn-17, (S,S)-anti-29 and (S,S)-anti-33, were confirmed by stereospecific synthesis.
-
-
-
-
29
-
-
33746191442
-
-
S.D. Bull, S.G. Davies, A.C. Garner, D. Kruchinin, M.S. Key, P.M. Roberts, A.D. Savory, A.D. Smith, and J.E. Thomson Org. Biomol. Chem. 4 2006 2945
-
(2006)
Org. Biomol. Chem.
, vol.4
, pp. 2945
-
-
Bull, S.D.1
Davies, S.G.2
Garner, A.C.3
Kruchinin, D.4
Key, M.S.5
Roberts, P.M.6
Savory, A.D.7
Smith, A.D.8
Thomson, J.E.9
|