메뉴 건너뛰기




Volumn 82, Issue 12, 2010, Pages

Finite-temperature linear conductance from the Matsubara Green's function without analytic continuation to the real axis

Author keywords

[No Author keywords available]

Indexed keywords


EID: 77957737611     PISSN: 10980121     EISSN: 1550235X     Source Type: Journal    
DOI: 10.1103/PhysRevB.82.125114     Document Type: Article
Times cited : (40)

References (23)
  • 6
    • 33846443185 scopus 로고    scopus 로고
    • 10.1103/PhysRevB.75.035123
    • T. Ozaki, Phys. Rev. B 75, 035123 (2007). 10.1103/PhysRevB.75.035123
    • (2007) Phys. Rev. B , vol.75 , pp. 035123
    • Ozaki, T.1
  • 8
  • 11
    • 77956598293 scopus 로고    scopus 로고
    • 10.1090/S0025-5718-09-02289-3
    • H. Monien, Math. Comput. 79, 857 (2010). 10.1090/S0025-5718-09-02289-3
    • (2010) Math. Comput. , vol.79 , pp. 857
    • Monien, H.1
  • 12
    • 77957723514 scopus 로고    scopus 로고
    • In the limit N→∞ the fraction of poles which agree well with their Matsubara counterparts approaches 2/π (H. Monien, private communication). In the context of Gaussian quadrature of sums the truncation of the continued fraction for (1-xcotx ) / x2 plays a central role. Analytical results for this issue are presented in Ref..
    • In the limit N → ∞ the fraction of poles which agree well with their Matsubara counterparts approaches 2 / π (H. Monien, private communication). In the context of Gaussian quadrature of sums the truncation of the continued fraction for (1 - x cot x) / x 2 plays a central role. Analytical results for this issue are presented in Ref..
  • 13
    • 77954742474 scopus 로고    scopus 로고
    • 10.1103/PhysRevB.80.073102
    • A. Croy and U. Saalmann, Phys. Rev. B 80, 073102 (2009). 10.1103/PhysRevB.80.073102
    • (2009) Phys. Rev. B , vol.80 , pp. 073102
    • Croy, A.1    Saalmann, U.2
  • 14
    • 2842617037 scopus 로고
    • 10.1103/PhysRev.124.41
    • P. W. Anderson, Phys. Rev. 124, 41 (1961). 10.1103/PhysRev.124.41
    • (1961) Phys. Rev. , vol.124 , pp. 41
    • Anderson, P.W.1
  • 15
    • 3643122627 scopus 로고
    • 10.1103/PhysRevLett.68.2512
    • Y. Meir and N. S. Wingreen, Phys. Rev. Lett. 68, 2512 (1992). 10.1103/PhysRevLett.68.2512
    • (1992) Phys. Rev. Lett. , vol.68 , pp. 2512
    • Meir, Y.1    Wingreen, N.S.2
  • 16
    • 77957740898 scopus 로고    scopus 로고
    • ′ (i ωn ) turns out to be independent of those details, the local density of states is rather "unstable." The latter is illustrated in Fig. , where the mesh employed is the one detailed in Ref.. Following the notation of this Ref., the discretization parameters { N, N0 ,S,A } of the upper panel are given by T/Γ=0.05: { 41,11,2,2 }, T/Γ=0.2: { 41,12,2,2 }, and T/Γ=0.8: { 41,20,2,2 }, and those of the lower panel read T/Γ=0.05: { 61,15,2,2 }, T/Γ=0.2: { 61,22,2,2 }, and T/Γ=0.8: { 61,61,2,2 }.
    • ′ (i ω n) turns out to be independent of those details, the local density of states is rather "unstable." The latter is illustrated in Fig., where the mesh employed is the one detailed in Ref.. Following the notation of this Ref., the discretization parameters { N, N 0, S, A } of the upper panel are given by T / Γ = 0.05: { 41, 11, 2, 2 }, T / Γ = 0.2: { 41, 12, 2, 2 }, and T / Γ = 0.8: { 41, 20, 2, 2 }, and those of the lower panel read T / Γ = 0.05: { 61, 15, 2, 2 }, T / Γ = 0.2: { 61, 22, 2, 2 }, and T / Γ = 0.8: { 61, 61, 2, 2 }.
  • 17
    • 77957747066 scopus 로고    scopus 로고
    • ′ (iω ) can be computed in a stable way for arbitrary arguments ω except those close to the real axis (ω< ω0 ).
    • ′ (i ω) can be computed in a stable way for arbitrary arguments ω except those close to the real axis (ω < ω 0).
  • 18
    • 77957733549 scopus 로고    scopus 로고
    • If one implements the FRG in Keldysh space, the finite-temperature linear-response (as well as the nonequilibrium) conductance of the SIAM can be obtained without carrying out an analytic continuation (Ref.). The structure of the FRG flow equations, however, is far more complex in the Keldysh than in the Matsubara formalism. If one is interested in linear response only, the latter thus provides the simplest framework to study more complex geometries
    • If one implements the FRG in Keldysh space, the finite-temperature linear-response (as well as the nonequilibrium) conductance of the SIAM can be obtained without carrying out an analytic continuation (Ref.). The structure of the FRG flow equations, however, is far more complex in the Keldysh than in the Matsubara formalism. If one is interested in linear response only, the latter thus provides the simplest framework to study more complex geometries.
  • 19
    • 77957723625 scopus 로고    scopus 로고
    • Standard NRG is a well-established numerical tool to compute low-energy equilibrium properties of quantum impurity systems. A detailed introduction to this method can be found in Ref..
    • Standard NRG is a well-established numerical tool to compute low-energy equilibrium properties of quantum impurity systems. A detailed introduction to this method can be found in Ref..
  • 22
    • 77957730583 scopus 로고    scopus 로고
    • More precisely, we employ the so-called "approximation 1" in the notation of Ref..
    • More precisely, we employ the so-called "approximation 1" in the notation of Ref..
  • 23
    • 0003756811 scopus 로고
    • Cambridge University Press, Cambridge, 10.1017/CBO9780511470752
    • A. Hewson, The Kondo Problem to Heavy Fermions (Cambridge University Press, Cambridge, 1993). 10.1017/CBO9780511470752
    • (1993) The Kondo Problem to Heavy Fermions
    • Hewson, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.