-
4
-
-
56349125323
-
-
10.1088/0953-8984/20/34/345205
-
C. Karrasch, R. Hedden, R. Peters, Th. Pruschke, K. Schönhammer, and V. Meden, J. Phys.: Condens. Matter 20, 345205 (2008). 10.1088/0953-8984/20/34/ 345205
-
(2008)
J. Phys.: Condens. Matter
, vol.20
, pp. 345205
-
-
Karrasch, C.1
Hedden, R.2
Peters, R.3
Pruschke, Th.4
Schönhammer, K.5
Meden, V.6
-
6
-
-
33846443185
-
-
10.1103/PhysRevB.75.035123
-
T. Ozaki, Phys. Rev. B 75, 035123 (2007). 10.1103/PhysRevB.75.035123
-
(2007)
Phys. Rev. B
, vol.75
, pp. 035123
-
-
Ozaki, T.1
-
11
-
-
77956598293
-
-
10.1090/S0025-5718-09-02289-3
-
H. Monien, Math. Comput. 79, 857 (2010). 10.1090/S0025-5718-09-02289-3
-
(2010)
Math. Comput.
, vol.79
, pp. 857
-
-
Monien, H.1
-
12
-
-
77957723514
-
-
In the limit N→∞ the fraction of poles which agree well with their Matsubara counterparts approaches 2/π (H. Monien, private communication). In the context of Gaussian quadrature of sums the truncation of the continued fraction for (1-xcotx ) / x2 plays a central role. Analytical results for this issue are presented in Ref..
-
In the limit N → ∞ the fraction of poles which agree well with their Matsubara counterparts approaches 2 / π (H. Monien, private communication). In the context of Gaussian quadrature of sums the truncation of the continued fraction for (1 - x cot x) / x 2 plays a central role. Analytical results for this issue are presented in Ref..
-
-
-
-
13
-
-
77954742474
-
-
10.1103/PhysRevB.80.073102
-
A. Croy and U. Saalmann, Phys. Rev. B 80, 073102 (2009). 10.1103/PhysRevB.80.073102
-
(2009)
Phys. Rev. B
, vol.80
, pp. 073102
-
-
Croy, A.1
Saalmann, U.2
-
14
-
-
2842617037
-
-
10.1103/PhysRev.124.41
-
P. W. Anderson, Phys. Rev. 124, 41 (1961). 10.1103/PhysRev.124.41
-
(1961)
Phys. Rev.
, vol.124
, pp. 41
-
-
Anderson, P.W.1
-
16
-
-
77957740898
-
-
′ (i ωn ) turns out to be independent of those details, the local density of states is rather "unstable." The latter is illustrated in Fig. , where the mesh employed is the one detailed in Ref.. Following the notation of this Ref., the discretization parameters { N, N0 ,S,A } of the upper panel are given by T/Γ=0.05: { 41,11,2,2 }, T/Γ=0.2: { 41,12,2,2 }, and T/Γ=0.8: { 41,20,2,2 }, and those of the lower panel read T/Γ=0.05: { 61,15,2,2 }, T/Γ=0.2: { 61,22,2,2 }, and T/Γ=0.8: { 61,61,2,2 }.
-
′ (i ω n) turns out to be independent of those details, the local density of states is rather "unstable." The latter is illustrated in Fig., where the mesh employed is the one detailed in Ref.. Following the notation of this Ref., the discretization parameters { N, N 0, S, A } of the upper panel are given by T / Γ = 0.05: { 41, 11, 2, 2 }, T / Γ = 0.2: { 41, 12, 2, 2 }, and T / Γ = 0.8: { 41, 20, 2, 2 }, and those of the lower panel read T / Γ = 0.05: { 61, 15, 2, 2 }, T / Γ = 0.2: { 61, 22, 2, 2 }, and T / Γ = 0.8: { 61, 61, 2, 2 }.
-
-
-
-
17
-
-
77957747066
-
-
′ (iω ) can be computed in a stable way for arbitrary arguments ω except those close to the real axis (ω< ω0 ).
-
′ (i ω) can be computed in a stable way for arbitrary arguments ω except those close to the real axis (ω < ω 0).
-
-
-
-
18
-
-
77957733549
-
-
If one implements the FRG in Keldysh space, the finite-temperature linear-response (as well as the nonequilibrium) conductance of the SIAM can be obtained without carrying out an analytic continuation (Ref.). The structure of the FRG flow equations, however, is far more complex in the Keldysh than in the Matsubara formalism. If one is interested in linear response only, the latter thus provides the simplest framework to study more complex geometries
-
If one implements the FRG in Keldysh space, the finite-temperature linear-response (as well as the nonequilibrium) conductance of the SIAM can be obtained without carrying out an analytic continuation (Ref.). The structure of the FRG flow equations, however, is far more complex in the Keldysh than in the Matsubara formalism. If one is interested in linear response only, the latter thus provides the simplest framework to study more complex geometries.
-
-
-
-
19
-
-
77957723625
-
-
Standard NRG is a well-established numerical tool to compute low-energy equilibrium properties of quantum impurity systems. A detailed introduction to this method can be found in Ref..
-
Standard NRG is a well-established numerical tool to compute low-energy equilibrium properties of quantum impurity systems. A detailed introduction to this method can be found in Ref..
-
-
-
-
21
-
-
3342891459
-
-
10.1088/0953-8984/16/29/019
-
R. Hedden, V. Meden, Th. Pruschke, and K. Schönhammer, J. Phys.: Condens. Matter 16, 5279 (2004). 10.1088/0953-8984/16/29/019
-
(2004)
J. Phys.: Condens. Matter
, vol.16
, pp. 5279
-
-
Hedden, R.1
Meden, V.2
Pruschke, Th.3
Schönhammer, K.4
-
22
-
-
77957730583
-
-
More precisely, we employ the so-called "approximation 1" in the notation of Ref..
-
More precisely, we employ the so-called "approximation 1" in the notation of Ref..
-
-
-
-
23
-
-
0003756811
-
-
Cambridge University Press, Cambridge, 10.1017/CBO9780511470752
-
A. Hewson, The Kondo Problem to Heavy Fermions (Cambridge University Press, Cambridge, 1993). 10.1017/CBO9780511470752
-
(1993)
The Kondo Problem to Heavy Fermions
-
-
Hewson, A.1
|