-
1
-
-
69749109389
-
-
RSINAK 0034-6748. 10.1063/1.3206114
-
N. Gopalsami, H. T. Chien, A. Heifetz, E. R. Koehl, and A. C. Raptis, Rev. Sci. Instrum. RSINAK 0034-6748 80, 084702 (2009). 10.1063/1.3206114
-
(2009)
Rev. Sci. Instrum.
, vol.80
, pp. 084702
-
-
Gopalsami, N.1
Chien, H.T.2
Heifetz, A.3
Koehl, E.R.4
Raptis, A.C.5
-
2
-
-
77957730535
-
-
Laser induced breakdown" in Encyclopedia of Laser Physics and Technology
-
R. Paschotta, "Laser induced breakdown" in Encyclopedia of Laser Physics and Technology, http://www.rp-photonics.com/laser -induced-breakdown.html
-
-
-
Paschotta, R.1
-
3
-
-
0011760131
-
-
APPLAB 0003-6951. 10.1063/1.90116
-
P. Woskoboinikow, W. J. Mulligan, H. C. Praddaude, and D. R. Cohn, Appl. Phys. Lett. APPLAB 0003-6951 32, 527 (1978). 10.1063/1.90116
-
(1978)
Appl. Phys. Lett.
, vol.32
, pp. 527
-
-
Woskoboinikow, P.1
Mulligan, W.J.2
Praddaude, H.C.3
Cohn, D.R.4
-
4
-
-
77954844731
-
-
IEEE International Vacuum Electronics Conference, Monterey, CA, May 18-20, IVEC 2010 Book of Abstracts (IEEE cat. no. CFP10VAM-ART)
-
G. Nusinovich, V. Granatstein, T. Antonsen, Jr., R. Pu, O. Sinitsyn, J. Rodgers, A. Mohamed, J. Silverman, M. Al-Sheikhly, and Y. Dimant, IEEE International Vacuum Electronics Conference, Monterey, CA, May 18-20, 2010, IVEC 2010 Book of Abstracts (IEEE cat. no. CFP10VAM-ART), pp. 197-198.
-
(2010)
, pp. 197-198
-
-
Nusinovich, G.1
Granatstein, V.2
Antonsen Jr., T.3
Pu, R.4
Sinitsyn, O.5
Rodgers, J.6
Mohamed, A.7
Silverman, J.8
Al-Sheikhly, M.9
Dimant, Y.10
-
6
-
-
0004085478
-
-
(Gordon and Breach, Reading, England).
-
A. V. Gurevich, N. D. Borisov, and G. M. Milikh, Artificially Ionized Regions in the Atmosphere (Gordon and Breach, Reading, England, 1997).
-
(1997)
Artificially Ionized Regions in the Atmosphere
-
-
Gurevich, A.V.1
Borisov, N.D.2
Milikh, G.M.3
-
8
-
-
0026220402
-
-
RASCAD 0048-6604. 10.1029/91RS00580
-
K. Tsang, K. Papadopoupos, A. Drobot, P. Vitello, T. Wallace, and R. Shanny, Radio Sci. RASCAD 0048-6604 26, 1345 (1991). 10.1029/91RS00580
-
(1991)
Radio Sci.
, vol.26
, pp. 1345
-
-
Tsang, K.1
Papadopoupos, K.2
Drobot, A.3
Vitello, P.4
Wallace, T.5
Shanny, R.6
-
9
-
-
0011776395
-
-
JGREA2 0148-0227. 10.1029/93JA00795
-
K. Papadopoulos, G. M. Milikh, A. V. Gurevich, A. Drobot, and R. Shanny, J. Geophys. Res. JGREA2 0148-0227 98, 17,593 (1993). 10.1029/93JA00795
-
(1993)
J. Geophys. Res.
, vol.98
, pp. 17
-
-
Papadopoulos, K.1
Milikh, G.M.2
Gurevich, A.V.3
Drobot, A.4
Shanny, R.5
-
12
-
-
0035364347
-
Design of a 10-MW, 91.4-GHz frequency-doubling gyroklystron for advanced accelerator applications
-
DOI 10.1109/27.928954, PII S0093381301049505
-
W. Lawson, R. L. Ives, M. Mizuhara, J. M. Nelson, and M. E. Read, IEEE Trans. Plasma Sci. ITPSBD 0093-3813 29, 545 (2001). This amplifier has been designed for an output power of 10 MW and has been constructed; it is awaiting high voltage testing. We estimate an output power of only 1.5 MW since the output power achieved in a previous second harmonic GKL was 32 MW at 19.7 GHz (Ref.) and peak power scaling as f-2 is assumed. 10.1109/27.928954 (Pubitemid 32650835)
-
(2001)
IEEE Transactions on Plasma Science
, vol.29
, Issue.3
, pp. 545-558
-
-
Lawson, W.1
Lawrence Ives, R.2
Mizuhara, M.3
Neilson, J.M.4
Read, M.E.5
-
14
-
-
77957742065
-
Development of THz-range gyrotrons for detection of concealed radioactive materials
-
IJIWDO 0195-9271 (to be published), special issue on gyrotrons. The gyrotron oscillator described in Refs. has design output power of 300 kW and efficiency about 30%; this power and efficiency are a factor of 3 above those achieved in gyrotron oscillator experiments described in Ref.. An experimental program to realize the enhanced performance is underway at the University of Maryland. In the present paper, an output power of 200 kW is assumed.
-
G. Nusinovich, R. Pu, T. Antonsen, Jr., O. Sinisyn, J. Rodgers, A. Mohamed, J. Silverman, M. Al-Sheikhly, Y. Dimant, G. Milikh, M. Y. Glyavin, A. Luchinin, E. Kopelovich, and V. Granatstein, " Development of THz-range gyrotrons for detection of concealed radioactive materials.," Int. J. Infrared Millim. Waves IJIWDO 0195-9271 (to be published), special issue on gyrotrons. The gyrotron oscillator described in Refs. has design output power of 300 kW and efficiency about 30%; this power and efficiency are a factor of 3 above those achieved in gyrotron oscillator experiments described in Ref.. An experimental program to realize the enhanced performance is underway at the University of Maryland. In the present paper, an output power of 200 kW is assumed.
-
Int. J. Infrared Millim. Waves
-
-
Nusinovich, G.1
Pu, R.2
Antonsen Jr., T.3
Sinisyn, O.4
Rodgers, J.5
Mohamed, A.6
Silverman, J.7
Al-Sheikhly, M.8
Dimant, Y.9
Milikh, G.10
Glyavin, M.Y.11
Luchinin, A.12
Kopelovich, E.13
Granatstein, V.14
-
16
-
-
0001838993
-
-
INETAK 0020-4412. 10.1007/BF02759013
-
M. V. Ivashchenko, A. I. Karapuzikov, A. N. Malov, and I. V. Sherstov, Instrum. Exp. Tech. INETAK 0020-4412 43, 119 (2000). 10.1007/BF02759013
-
(2000)
Instrum. Exp. Tech.
, vol.43
, pp. 119
-
-
Ivashchenko, M.V.1
Karapuzikov, A.I.2
Malov, A.N.3
Sherstov, I.V.4
|