메뉴 건너뛰기




Volumn , Issue , 2008, Pages 21-49

Supervised learning

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION (OF INFORMATION); MACHINE LEARNING; PERSONNEL TRAINING; RISK ASSESSMENT; SUPERVISED LEARNING; SUPPORT VECTOR MACHINES;

EID: 77957690265     PISSN: 16112482     EISSN: None     Source Type: Book Series    
DOI: 10.1007/978-3-540-75171-7_2     Document Type: Conference Paper
Times cited : (16)

References (53)
  • 2
    • 0033556929 scopus 로고    scopus 로고
    • Boosted mixture of experts: An ensemble learning scheme
    • R. Avnimelech and N. Intrator. Boosted mixture of experts: An ensemble learning scheme. Neural Computation, 11(2):483-497, 1999.
    • (1999) Neural Computation , vol.11 , Issue.2 , pp. 483-497
    • Avnimelech, R.1    Intrator, N.2
  • 4
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman. Bagging predictors. Machine Learning, 24(2):123-140, 1996.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 5
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman. Random forests. Machine Learning, 45(1):5-32, 2001.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 6
    • 0036104537 scopus 로고    scopus 로고
    • Advances in instance selection for instance-based learning algorithms
    • H. Brighton and C. Mellish. Advances in instance selection for instance-based learning algorithms. Data Mining and Knowledge Discovery, 6(2):153-172, 2002.
    • (2002) Data Mining and Knowledge Discovery , vol.6 , Issue.2 , pp. 153-172
    • Brighton, H.1    Mellish, C.2
  • 7
    • 85118837783 scopus 로고
    • Addressing the selective superiority problem: Automatic algorithm/mode class selection
    • Morgan Kaufmann Publishers Inc., San Francisco CA, USA
    • C. Brodley. Addressing the selective superiority problem: Automatic algorithm/mode class selection. In Proceedings of the 10th International Conference on Machine Learning (ICML 93), pages 17-24. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1993.
    • (1993) Proceedings of the 10th International Conference on Machine Learning (ICML 93) , pp. 17-24
    • Brodley, C.1
  • 14
    • 0000201141 scopus 로고    scopus 로고
    • Improving regressors using boosting techniques
    • D. H. Fisher, editor Nashville, Tennessee, USA, July 8-12, 1997 Morgan Kaufmann, San Francisco, CA, USA
    • H. Drucker. Improving regressors using boosting techniques. In D. H. Fisher, editor, Proceedings of the Fourteenth International Conference on Machine Learning (ICML 1997), Nashville, Tennessee, USA, July 8-12, 1997, pages 107-115. Morgan Kaufmann, San Francisco, CA, USA, 1997.
    • (1997) Proceedings of the Fourteenth International Conference on Machine Learning (ICML 1997) , pp. 107-115
    • Drucker, H.1
  • 15
    • 60349097060 scopus 로고    scopus 로고
    • Anytime induction of decision trees: An iterative improvement approach
    • AAAI Press, Menlo Park, CA, USA
    • S. Esmeir and S. Markovitch. Anytime induction of decision trees: An iterative improvement approach. In AAAI. AAAI Press, Menlo Park, CA, USA, 2006.
    • (2006) AAAI
    • Esmeir, S.1    Markovitch, S.2
  • 18
  • 21
    • 10644281769 scopus 로고    scopus 로고
    • Towards parameter-free data mining
    • W. Kim, R. Kohavi, J. Gehrke, and W. DuMouchel, editors ACM, New York, Ny, USA
    • E. J. Keogh, S. Lonardi, and C. Ratanamahatana. Towards parameter-free data mining. In W. Kim, R. Kohavi, J. Gehrke, and W. DuMouchel, editors, KDD, pages 206-215. ACM, New York, Ny, USA, 2004.
    • (2004) KDD , pp. 206-215
    • Keogh, E.J.1    Lonardi, S.2    Ratanamahatana, C.3
  • 22
    • 0002872346 scopus 로고    scopus 로고
    • Bias plus variance decomposition for zero-one loss functions
    • Morgan Kaufmann
    • R. Kohavi and D. Wolpert. Bias plus variance decomposition for zero-one loss functions. In ICML, pages 275-283. Morgan Kaufmann, 1996.
    • (1996) ICML , pp. 275-283
    • Kohavi, R.1    Wolpert, D.2
  • 23
    • 85054435084 scopus 로고
    • Neural network ensembles, cross validation, and active learning
    • Gerald Tesauro, David S. Touretzky, and Todd K. Leen, editors MIT Press, Cambridge, MA, USA
    • A. Krogh and J. Vedelsby. Neural network ensembles, cross validation, and active learning. In Gerald Tesauro, David S. Touretzky, and Todd K. Leen, editors, Advances in Neural Information Processing Systems 7, [NIPS Conference, Denver, Colorado, USA, 1994], pages 231-238. MIT Press, Cambridge, MA, USA, 1994.
    • (1994) Advances in Neural Information Processing Systems 7, [NIPS Conference, Denver, Colorado, USA, 1994] , pp. 231-238
    • Krogh, A.1    Vedelsby, J.2
  • 25
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
    • L. I. Kuncheva and C. J. Whitaker. Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Machine Learning, 51(2):181-207, 2003.
    • (2003) Machine Learning , vol.51 , Issue.2 , pp. 181-207
    • Kuncheva, L.I.1    Whitaker, C.J.2
  • 26
    • 84901188262 scopus 로고    scopus 로고
    • Case retrieval nets: Basic ideas and extensions
    • M. Lenz and H-D. Burkhard. Case retrieval nets: Basic ideas and extensions. In KI-Kunstliche Intelligenz, pages 227-239, 1996.
    • (1996) KI-Kunstliche Intelligenz , pp. 227-239
    • Lenz, M.1    Burkhard, H.-D.2
  • 27
    • 84958592281 scopus 로고    scopus 로고
    • Applying case retrieval nets to diagnostic tasks in technical domains
    • Ian F. C. Smith and Boi Faltings, editors Springer, New York
    • M. Lenz, H.-D. Burkhard, and S. Brückner. Applying case retrieval nets to diagnostic tasks in technical domains. In Ian F. C. Smith and Boi Faltings, editors, EWCBR, volume 1168 of Lecture Notes in Computer Science, pages 219-233. Springer, New York, 1996.
    • (1996) EWCBR, Volume 1168 of Lecture notes in Computer Science , pp. 219-233
    • Lenz, M.1    Burkhard, H.-D.2    Brüuckner, S.3
  • 34
    • 84958647317 scopus 로고    scopus 로고
    • A next step towards efficient case retrieval in large-scale case bases
    • I. Smith and B. Faltings, editors Springer, New York
    • J.W. Schaaf. Fish and Shrink. A next step towards efficient case retrieval in large-scale case bases. In I. Smith and B. Faltings, editors, European Conference on Case-Based Reasoning (EWCBR'96, pages 362-376. Springer, New York, 1996.
    • (1996) European Conference on Case-Based Reasoning (EWCBR'96 , pp. 362-376
    • Schaaf, J.W.1    Fish2    Shrink3
  • 38
    • 0023223978 scopus 로고
    • Toward a universal law of generalization for psychological science
    • R. N. Shepard. Toward a universal law of generalization for psychological science. Science, 237:1317-1228, 1987.
    • (1987) Science , vol.237 , pp. 1317-1228
    • Shepard, R.N.1
  • 39
    • 0001301027 scopus 로고
    • Remembering to forget: A competence preserving case deletion policy for cbr system
    • C. Mellish, editor IJCAI Morgan Kaufmann, San Francisco, CA, USA, 1995
    • B. Smyth and M. Keane. Remembering to forget: A competence preserving case deletion policy for cbr system. In C. Mellish, editor, Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, IJCAI (1995), pages 337-382. Morgan Kaufmann, San Francisco, CA, USA, 1995.
    • (1995) Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence , pp. 337-382
    • Smyth, B.1    Keane, M.2
  • 40
    • 84948153142 scopus 로고    scopus 로고
    • Footprint-based retrieval
    • Klaus-Dieter Althoff, Ralph Bergmann, and Karl Branting, editors Springer, New York
    • B. Smyth and E. McKenna. Footprint-based retrieval. In Klaus-Dieter Althoff, Ralph Bergmann, and Karl Branting, editors, ICCBR, volume 1650 of Lecture Notes in Computer Science, pages 343-357. Springer, New York, 1999.
    • (1999) ICCBR, Volume 1650 of Lecture notes in Computer Science , pp. 343-357
    • Smyth, B.1    McKenna, E.2
  • 41
    • 0016969272 scopus 로고
    • An experiment with the nearest neighbor rule
    • I. Tomek. An experiment with the nearest neighbor rule. IEEE Transactions on Information Theory, 6(6):448-452, 1976.
    • (1976) IEEE Transactions on Information Theory , vol.6 , Issue.6 , pp. 448-452
    • Tomek, I.1
  • 43
    • 35048891116 scopus 로고    scopus 로고
    • Diversity in random subspacing ensembles
    • Yahiko Kambayashi, Mukesh K. Mohania, and Wolfram Wöß, editors Springer, New York
    • A. Tsymbal, M. Pechenizkiy, and P. Cunningham. Diversity in random subspacing ensembles. In Yahiko Kambayashi, Mukesh K. Mohania, and Wolfram Wöß, editors, DaWaK, volume 3181 of Lecture Notes in Computer Science, pages 309-319. Springer, New York, 2004.
    • (2004) DaWaK, Volume 3181 of Lecture notes in Computer Science , pp. 309-319
    • Tsymbal, A.1    Pechenizkiy, M.2    Cunningham, P.3
  • 44
    • 0021518106 scopus 로고
    • A theory of the learnable
    • L. G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134-42, 1984.
    • (1984) Communications of the ACM , vol.27 , Issue.11 , pp. 1134-1142
    • Valiant, L.G.1
  • 46
    • 0001024505 scopus 로고
    • On the uniform convergence of relative frequencies of events to their probabilities
    • V. N. Vapnik and A.Y. Chervonenkis. On the uniform convergence of relative frequencies of events to their probabilities. Theory of Probability and its Applications, 16(2):264-280, 1971.
    • (1971) Theory of Probability and its Applications , vol.16 , Issue.2 , pp. 264-280
    • Vapnik, V.N.1    Chervonenkis, A.Y.2
  • 48
    • 0345097466 scopus 로고    scopus 로고
    • Image retrieval with svm active learning embedding euclidean search
    • Barcelona, September
    • L. Wang. Image retrieval with svm active learning embedding euclidean search. In IEEE International Conference on Image Processing, Barcelona, September 2003.
    • (2003) IEEE International Conference on Image Processing
    • Wang, L.1
  • 50
    • 0015361129 scopus 로고
    • Asymptotic properties of nearest neighbor rules using edited data
    • D. L. Wilson. Asymptotic properties of nearest neighbor rules using edited data. IEEE Transactions on Systems, Man and Cybernetics, 2(3):408-421, 1972.
    • (1972) IEEE Transactions on Systems, Man and Cybernetics , vol.2 , Issue.3 , pp. 408-421
    • Wilson, D.L.1
  • 51
    • 0000459353 scopus 로고    scopus 로고
    • Thelack of a priori distinctions between learning algorithms
    • D. H. Wolpert The lack of a priori distinctions between learning algorithms. In Neural Computation, 7, pages 1341-1390, 1996.
    • (1996) Neural Computation , vol.7 , pp. 1341-1390
    • Wolpert, D.H.1
  • 52
    • 85107848924 scopus 로고
    • Selecting typical instances in instance-based learning
    • Morgan Kaufmann Publishers Inc., San Francisco, CA, USA
    • J. Zhang. Selecting typical instances in instance-based learning. In Proceedings of the 9th International Conference on Machine Learning (ICML 92), pages 470-479. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1992.
    • (1992) Proceedings of the 9th International Conference on Machine Learning (ICML 92) , pp. 470-479
    • Zhang, J.1
  • 53
    • 84880664443 scopus 로고    scopus 로고
    • Remembering to add: Competence preserving case-addition policies for case-base maintenance
    • Morgan Kaufmann Publishers Inc., San Francisco, CA, USA
    • J. Zu and Q. Yang. Remembering to add: competence preserving case-addition policies for case-base maintenance. In Proceedings of the 16th International Joint Conference on Artificial Intelligence (IJCAI 97), pages 234-239. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1997.
    • (1997) Proceedings of the 16th International Joint Conference on Artificial Intelligence (IJCAI 97) , pp. 234-239
    • Zu, J.1    Yang, Q.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.